Metamath Proof Explorer


Theorem cdlemg39

Description: Eliminate =/= conditions from cdlemg38 . TODO: Would this better be done at cdlemg35 ? TODO: Fix comment. (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses cdlemg35.l ˙=K
cdlemg35.j ˙=joinK
cdlemg35.m ˙=meetK
cdlemg35.a A=AtomsK
cdlemg35.h H=LHypK
cdlemg35.t T=LTrnKW
cdlemg35.r R=trLKW
Assertion cdlemg39 KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg35.l ˙=K
2 cdlemg35.j ˙=joinK
3 cdlemg35.m ˙=meetK
4 cdlemg35.a A=AtomsK
5 cdlemg35.h H=LHypK
6 cdlemg35.t T=LTrnKW
7 cdlemg35.r R=trLKW
8 simpl1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQRF=RGKHLWH
9 simpl2l KHLWHPA¬P˙WQA¬Q˙WFTGTPQRF=RGPA¬P˙W
10 simpl2r KHLWHPA¬P˙WQA¬Q˙WFTGTPQRF=RGQA¬Q˙W
11 simpl31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQRF=RGFT
12 simpl32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQRF=RGGT
13 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTPQRF=RGRF=RG
14 1 2 3 4 5 6 7 cdlemg15 KHLWHPA¬P˙WQA¬Q˙WFTGTRF=RGP˙FGP˙W=Q˙FGQ˙W
15 8 9 10 11 12 13 14 syl321anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQRF=RGP˙FGP˙W=Q˙FGQ˙W
16 simpll1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGFP=PKHLWH
17 simpll2 KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGFP=PPA¬P˙WQA¬Q˙W
18 simpl31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGFT
19 18 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGFP=PFT
20 simpl32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGGT
21 20 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGFP=PGT
22 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGFP=PFP=P
23 1 2 3 4 5 6 7 cdlemg14f KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PP˙FGP˙W=Q˙FGQ˙W
24 16 17 19 21 22 23 syl113anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGFP=PP˙FGP˙W=Q˙FGQ˙W
25 simpll1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGGP=PKHLWH
26 simpll2 KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGGP=PPA¬P˙WQA¬Q˙W
27 18 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGGP=PFT
28 20 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGGP=PGT
29 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGGP=PGP=P
30 1 2 3 4 5 6 7 cdlemg14g KHLWHPA¬P˙WQA¬Q˙WFTGTGP=PP˙FGP˙W=Q˙FGQ˙W
31 25 26 27 28 29 30 syl113anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGGP=PP˙FGP˙W=Q˙FGQ˙W
32 simpll1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGFPPGPPKHLWH
33 simpl2l KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGPA¬P˙W
34 33 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGFPPGPPPA¬P˙W
35 simpl2r KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGQA¬Q˙W
36 35 adantr KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGFPPGPPQA¬Q˙W
37 simpll3 KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGFPPGPPFTGTPQ
38 simpr KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGFPPGPPFPPGPP
39 simplr KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGFPPGPPRFRG
40 1 2 3 4 5 6 7 cdlemg38 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFPPGPPRFRGP˙FGP˙W=Q˙FGQ˙W
41 32 34 36 37 38 39 40 syl312anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGFPPGPPP˙FGP˙W=Q˙FGQ˙W
42 24 31 41 pm2.61da2ne KHLWHPA¬P˙WQA¬Q˙WFTGTPQRFRGP˙FGP˙W=Q˙FGQ˙W
43 15 42 pm2.61dane KHLWHPA¬P˙WQA¬Q˙WFTGTPQP˙FGP˙W=Q˙FGQ˙W