Metamath Proof Explorer


Theorem cdlemg8b

Description: TODO: FIX COMMENT. (Contributed by NM, 29-Apr-2013)

Ref Expression
Hypotheses cdlemg8.l ˙=K
cdlemg8.j ˙=joinK
cdlemg8.m ˙=meetK
cdlemg8.a A=AtomsK
cdlemg8.h H=LHypK
cdlemg8.t T=LTrnKW
Assertion cdlemg8b KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPP˙FGP=P˙Q

Proof

Step Hyp Ref Expression
1 cdlemg8.l ˙=K
2 cdlemg8.j ˙=joinK
3 cdlemg8.m ˙=meetK
4 cdlemg8.a A=AtomsK
5 cdlemg8.h H=LHypK
6 cdlemg8.t T=LTrnKW
7 simp1l KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPKHL
8 7 hllatd KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPKLat
9 simp21l KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPPA
10 eqid BaseK=BaseK
11 10 4 atbase PAPBaseK
12 9 11 syl KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPPBaseK
13 simp22l KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPQA
14 10 4 atbase QAQBaseK
15 13 14 syl KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPQBaseK
16 10 1 2 latlej1 KLatPBaseKQBaseKP˙P˙Q
17 8 12 15 16 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPP˙P˙Q
18 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPKHLWH
19 simp23 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFT
20 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPGT
21 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPPA¬P˙W
22 1 4 5 6 ltrnel KHLWHGTPA¬P˙WGPA¬GP˙W
23 18 20 21 22 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPGPA¬GP˙W
24 1 4 5 6 ltrnel KHLWHFTGPA¬GP˙WFGPA¬FGP˙W
25 24 simpld KHLWHFTGPA¬GP˙WFGPA
26 18 19 23 25 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGPA
27 10 4 atbase FGPAFGPBaseK
28 26 27 syl KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGPBaseK
29 10 5 6 ltrncl KHLWHGTQBaseKGQBaseK
30 18 20 15 29 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPGQBaseK
31 10 5 6 ltrncl KHLWHFTGQBaseKFGQBaseK
32 18 19 30 31 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGQBaseK
33 10 1 2 latlej1 KLatFGPBaseKFGQBaseKFGP˙FGP˙FGQ
34 8 28 32 33 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGP˙FGP˙FGQ
35 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGP˙FGQ=P˙Q
36 34 35 breqtrd KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGP˙P˙Q
37 10 2 4 hlatjcl KHLPAQAP˙QBaseK
38 7 9 13 37 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPP˙QBaseK
39 10 1 2 latjle12 KLatPBaseKFGPBaseKP˙QBaseKP˙P˙QFGP˙P˙QP˙FGP˙P˙Q
40 8 12 28 38 39 syl13anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPP˙P˙QFGP˙P˙QP˙FGP˙P˙Q
41 17 36 40 mpbi2and KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPP˙FGP˙P˙Q
42 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPFGPP
43 42 necomd KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPPFGP
44 1 2 4 ps-1 KHLPAFGPAPFGPPAQAP˙FGP˙P˙QP˙FGP=P˙Q
45 7 9 26 43 9 13 44 syl132anc KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPP˙FGP˙P˙QP˙FGP=P˙Q
46 41 45 mpbid KHLWHPA¬P˙WQA¬Q˙WFTGTFGP˙FGQ=P˙QFGPPP˙FGP=P˙Q