| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemk5.b |  | 
						
							| 2 |  | cdlemk5.l |  | 
						
							| 3 |  | cdlemk5.j |  | 
						
							| 4 |  | cdlemk5.m |  | 
						
							| 5 |  | cdlemk5.a |  | 
						
							| 6 |  | cdlemk5.h |  | 
						
							| 7 |  | cdlemk5.t |  | 
						
							| 8 |  | cdlemk5.r |  | 
						
							| 9 |  | cdlemk5.z |  | 
						
							| 10 |  | cdlemk5.y |  | 
						
							| 11 |  | cdlemk5.x |  | 
						
							| 12 |  | simp11 |  | 
						
							| 13 |  | simp12 |  | 
						
							| 14 |  | simp13l |  | 
						
							| 15 |  | simp31 |  | 
						
							| 16 | 6 7 | ltrnco |  | 
						
							| 17 | 12 14 15 16 | syl3anc |  | 
						
							| 18 |  | simp33 |  | 
						
							| 19 | 17 18 | jca |  | 
						
							| 20 |  | simp2 |  | 
						
							| 21 |  | simp32 |  | 
						
							| 22 | 1 2 3 4 5 6 7 8 9 10 11 | cdlemk11t |  | 
						
							| 23 | 12 13 19 20 15 21 22 | syl312anc |  | 
						
							| 24 |  | cnvco |  | 
						
							| 25 | 24 | coeq2i |  | 
						
							| 26 |  | coass |  | 
						
							| 27 | 25 26 | eqtr4i |  | 
						
							| 28 | 1 6 7 | ltrn1o |  | 
						
							| 29 | 12 15 28 | syl2anc |  | 
						
							| 30 |  | f1ococnv2 |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 | 31 | coeq1d |  | 
						
							| 33 | 1 6 7 | ltrn1o |  | 
						
							| 34 | 12 14 33 | syl2anc |  | 
						
							| 35 |  | f1ocnv |  | 
						
							| 36 |  | f1of |  | 
						
							| 37 |  | fcoi2 |  | 
						
							| 38 | 34 35 36 37 | 4syl |  | 
						
							| 39 | 32 38 | eqtrd |  | 
						
							| 40 | 27 39 | eqtrid |  | 
						
							| 41 | 40 | fveq2d |  | 
						
							| 42 | 6 7 8 | trlcnv |  | 
						
							| 43 | 12 14 42 | syl2anc |  | 
						
							| 44 | 41 43 | eqtrd |  | 
						
							| 45 | 44 | oveq2d |  | 
						
							| 46 | 23 45 | breqtrd |  |