Metamath Proof Explorer


Theorem cdlemk45

Description: Part of proof of Lemma K of Crawley p. 118. Line 37, p. 119. G , I stand for g, h. X represents tau. They do not explicitly mention the requirement ` ( G o. I ) =/= ( _I |`B ) . (Contributed by NM, 22-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemk45 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBGI/gXP˙I/gXP˙RG

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 simp11 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBKHLWH
13 simp12 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBFTFIB
14 simp13l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBGT
15 simp31 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBIT
16 6 7 ltrnco KHLWHGTITGIT
17 12 14 15 16 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBGIT
18 simp33 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBGIIB
19 17 18 jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBGITGIIB
20 simp2 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBNTPA¬P˙WRF=RN
21 simp32 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBIIB
22 1 2 3 4 5 6 7 8 9 10 11 cdlemk11t KHLWHFTFIBGITGIIBNTPA¬P˙WRF=RNITIIBGI/gXP˙I/gXP˙RIGI-1
23 12 13 19 20 15 21 22 syl312anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBGI/gXP˙I/gXP˙RIGI-1
24 cnvco GI-1=I-1G-1
25 24 coeq2i IGI-1=II-1G-1
26 coass II-1G-1=II-1G-1
27 25 26 eqtr4i IGI-1=II-1G-1
28 1 6 7 ltrn1o KHLWHITI:B1-1 ontoB
29 12 15 28 syl2anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBI:B1-1 ontoB
30 f1ococnv2 I:B1-1 ontoBII-1=IB
31 29 30 syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBII-1=IB
32 31 coeq1d KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBII-1G-1=IBG-1
33 1 6 7 ltrn1o KHLWHGTG:B1-1 ontoB
34 12 14 33 syl2anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBG:B1-1 ontoB
35 f1ocnv G:B1-1 ontoBG-1:B1-1 ontoB
36 f1of G-1:B1-1 ontoBG-1:BB
37 fcoi2 G-1:BBIBG-1=G-1
38 34 35 36 37 4syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBIBG-1=G-1
39 32 38 eqtrd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBII-1G-1=G-1
40 27 39 eqtrid KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBIGI-1=G-1
41 40 fveq2d KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBRIGI-1=RG-1
42 6 7 8 trlcnv KHLWHGTRG-1=RG
43 12 14 42 syl2anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBRG-1=RG
44 41 43 eqtrd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBRIGI-1=RG
45 44 oveq2d KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBI/gXP˙RIGI-1=I/gXP˙RG
46 23 45 breqtrd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBGI/gXP˙I/gXP˙RG