Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|
2 |
|
cdlemk5.l |
|
3 |
|
cdlemk5.j |
|
4 |
|
cdlemk5.m |
|
5 |
|
cdlemk5.a |
|
6 |
|
cdlemk5.h |
|
7 |
|
cdlemk5.t |
|
8 |
|
cdlemk5.r |
|
9 |
|
cdlemk5.z |
|
10 |
|
cdlemk5.y |
|
11 |
|
cdlemk5.x |
|
12 |
|
simp11 |
|
13 |
|
simp12 |
|
14 |
|
simp13l |
|
15 |
|
simp31 |
|
16 |
6 7
|
ltrnco |
|
17 |
12 14 15 16
|
syl3anc |
|
18 |
|
simp33 |
|
19 |
17 18
|
jca |
|
20 |
|
simp2 |
|
21 |
|
simp32 |
|
22 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk11t |
|
23 |
12 13 19 20 15 21 22
|
syl312anc |
|
24 |
|
cnvco |
|
25 |
24
|
coeq2i |
|
26 |
|
coass |
|
27 |
25 26
|
eqtr4i |
|
28 |
1 6 7
|
ltrn1o |
|
29 |
12 15 28
|
syl2anc |
|
30 |
|
f1ococnv2 |
|
31 |
29 30
|
syl |
|
32 |
31
|
coeq1d |
|
33 |
1 6 7
|
ltrn1o |
|
34 |
12 14 33
|
syl2anc |
|
35 |
|
f1ocnv |
|
36 |
|
f1of |
|
37 |
|
fcoi2 |
|
38 |
34 35 36 37
|
4syl |
|
39 |
32 38
|
eqtrd |
|
40 |
27 39
|
eqtrid |
|
41 |
40
|
fveq2d |
|
42 |
6 7 8
|
trlcnv |
|
43 |
12 14 42
|
syl2anc |
|
44 |
41 43
|
eqtrd |
|
45 |
44
|
oveq2d |
|
46 |
23 45
|
breqtrd |
|