Metamath Proof Explorer


Theorem cdlemk51

Description: Part of proof of Lemma K of Crawley p. 118. Line 6, p. 120. G , I stand for g, h. X represents tau. TODO: Combine into cdlemk52 ? (Contributed by NM, 23-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemk51 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXP˙RI/gX˙I/gXP˙RG/gX˙G/gXP˙RI˙I/gXP˙RG

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 simp11 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBKHLWH
13 simp12 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBFTFIB
14 simp3 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBITIIB
15 simp21 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBNT
16 simp22 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBPA¬P˙W
17 simp23 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBRF=RN
18 1 2 3 4 5 6 7 8 9 10 11 cdlemk39s KHLWHFTFIBITIIBNTPA¬P˙WRF=RNRI/gX˙RI
19 12 13 14 15 16 17 18 syl132anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBRI/gX˙RI
20 simp11l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBKHL
21 20 hllatd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBKLat
22 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s KHLWHFTFIBITIIBNTPA¬P˙WRF=RNI/gXT
23 12 13 14 15 16 17 22 syl132anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBI/gXT
24 1 6 7 8 trlcl KHLWHI/gXTRI/gXB
25 12 23 24 syl2anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBRI/gXB
26 simp3l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBIT
27 simp3r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBIIB
28 1 5 6 7 8 trlnidat KHLWHITIIBRIA
29 12 26 27 28 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBRIA
30 1 5 atbase RIARIB
31 29 30 syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBRIB
32 simp13 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGTGIB
33 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNG/gXT
34 12 13 32 15 16 17 33 syl132anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXT
35 simp22l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBPA
36 2 5 6 7 ltrnat KHLWHG/gXTPAG/gXPA
37 12 34 35 36 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXPA
38 1 5 atbase G/gXPAG/gXPB
39 37 38 syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXPB
40 1 2 3 latjlej2 KLatRI/gXBRIBG/gXPBRI/gX˙RIG/gXP˙RI/gX˙G/gXP˙RI
41 21 25 31 39 40 syl13anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBRI/gX˙RIG/gXP˙RI/gX˙G/gXP˙RI
42 19 41 mpd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXP˙RI/gX˙G/gXP˙RI
43 1 2 3 4 5 6 7 8 9 10 11 cdlemk39s KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNRG/gX˙RG
44 12 13 32 15 16 17 43 syl132anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBRG/gX˙RG
45 1 6 7 8 trlcl KHLWHG/gXTRG/gXB
46 12 34 45 syl2anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBRG/gXB
47 simp13l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGT
48 simp13r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIB
49 1 5 6 7 8 trlnidat KHLWHGTGIBRGA
50 12 47 48 49 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBRGA
51 1 5 atbase RGARGB
52 50 51 syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBRGB
53 2 5 6 7 ltrnat KHLWHI/gXTPAI/gXPA
54 12 23 35 53 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBI/gXPA
55 1 5 atbase I/gXPAI/gXPB
56 54 55 syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBI/gXPB
57 1 2 3 latjlej2 KLatRG/gXBRGBI/gXPBRG/gX˙RGI/gXP˙RG/gX˙I/gXP˙RG
58 21 46 52 56 57 syl13anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBRG/gX˙RGI/gXP˙RG/gX˙I/gXP˙RG
59 44 58 mpd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBI/gXP˙RG/gX˙I/gXP˙RG
60 1 3 latjcl KLatG/gXPBRI/gXBG/gXP˙RI/gXB
61 21 39 25 60 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXP˙RI/gXB
62 1 3 5 hlatjcl KHLG/gXPARIAG/gXP˙RIB
63 20 37 29 62 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXP˙RIB
64 1 3 latjcl KLatI/gXPBRG/gXBI/gXP˙RG/gXB
65 21 56 46 64 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBI/gXP˙RG/gXB
66 1 3 5 hlatjcl KHLI/gXPARGAI/gXP˙RGB
67 20 54 50 66 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBI/gXP˙RGB
68 1 2 4 latmlem12 KLatG/gXP˙RI/gXBG/gXP˙RIBI/gXP˙RG/gXBI/gXP˙RGBG/gXP˙RI/gX˙G/gXP˙RII/gXP˙RG/gX˙I/gXP˙RGG/gXP˙RI/gX˙I/gXP˙RG/gX˙G/gXP˙RI˙I/gXP˙RG
69 21 61 63 65 67 68 syl122anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXP˙RI/gX˙G/gXP˙RII/gXP˙RG/gX˙I/gXP˙RGG/gXP˙RI/gX˙I/gXP˙RG/gX˙G/gXP˙RI˙I/gXP˙RG
70 42 59 69 mp2and KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBG/gXP˙RI/gX˙I/gXP˙RG/gX˙G/gXP˙RI˙I/gXP˙RG