Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|
2 |
|
cdlemk5.l |
|
3 |
|
cdlemk5.j |
|
4 |
|
cdlemk5.m |
|
5 |
|
cdlemk5.a |
|
6 |
|
cdlemk5.h |
|
7 |
|
cdlemk5.t |
|
8 |
|
cdlemk5.r |
|
9 |
|
cdlemk5.z |
|
10 |
|
cdlemk5.y |
|
11 |
|
cdlemk5.x |
|
12 |
|
simp11 |
|
13 |
|
simp12 |
|
14 |
|
simp3 |
|
15 |
|
simp21 |
|
16 |
|
simp22 |
|
17 |
|
simp23 |
|
18 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk39s |
|
19 |
12 13 14 15 16 17 18
|
syl132anc |
|
20 |
|
simp11l |
|
21 |
20
|
hllatd |
|
22 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s |
|
23 |
12 13 14 15 16 17 22
|
syl132anc |
|
24 |
1 6 7 8
|
trlcl |
|
25 |
12 23 24
|
syl2anc |
|
26 |
|
simp3l |
|
27 |
|
simp3r |
|
28 |
1 5 6 7 8
|
trlnidat |
|
29 |
12 26 27 28
|
syl3anc |
|
30 |
1 5
|
atbase |
|
31 |
29 30
|
syl |
|
32 |
|
simp13 |
|
33 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s |
|
34 |
12 13 32 15 16 17 33
|
syl132anc |
|
35 |
|
simp22l |
|
36 |
2 5 6 7
|
ltrnat |
|
37 |
12 34 35 36
|
syl3anc |
|
38 |
1 5
|
atbase |
|
39 |
37 38
|
syl |
|
40 |
1 2 3
|
latjlej2 |
|
41 |
21 25 31 39 40
|
syl13anc |
|
42 |
19 41
|
mpd |
|
43 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk39s |
|
44 |
12 13 32 15 16 17 43
|
syl132anc |
|
45 |
1 6 7 8
|
trlcl |
|
46 |
12 34 45
|
syl2anc |
|
47 |
|
simp13l |
|
48 |
|
simp13r |
|
49 |
1 5 6 7 8
|
trlnidat |
|
50 |
12 47 48 49
|
syl3anc |
|
51 |
1 5
|
atbase |
|
52 |
50 51
|
syl |
|
53 |
2 5 6 7
|
ltrnat |
|
54 |
12 23 35 53
|
syl3anc |
|
55 |
1 5
|
atbase |
|
56 |
54 55
|
syl |
|
57 |
1 2 3
|
latjlej2 |
|
58 |
21 46 52 56 57
|
syl13anc |
|
59 |
44 58
|
mpd |
|
60 |
1 3
|
latjcl |
|
61 |
21 39 25 60
|
syl3anc |
|
62 |
1 3 5
|
hlatjcl |
|
63 |
20 37 29 62
|
syl3anc |
|
64 |
1 3
|
latjcl |
|
65 |
21 56 46 64
|
syl3anc |
|
66 |
1 3 5
|
hlatjcl |
|
67 |
20 54 50 66
|
syl3anc |
|
68 |
1 2 4
|
latmlem12 |
|
69 |
21 61 63 65 67 68
|
syl122anc |
|
70 |
42 59 69
|
mp2and |
|