Metamath Proof Explorer


Theorem cdlemn11pre

Description: Part of proof of Lemma N of Crawley p. 121 line 37. TODO: combine cdlemn11a , cdlemn11b , cdlemn11c , cdlemn11pre into one? (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn11a.b B=BaseK
cdlemn11a.l ˙=K
cdlemn11a.j ˙=joinK
cdlemn11a.a A=AtomsK
cdlemn11a.h H=LHypK
cdlemn11a.p P=ocKW
cdlemn11a.o O=hTIB
cdlemn11a.t T=LTrnKW
cdlemn11a.r R=trLKW
cdlemn11a.e E=TEndoKW
cdlemn11a.i I=DIsoBKW
cdlemn11a.J J=DIsoCKW
cdlemn11a.u U=DVecHKW
cdlemn11a.d +˙=+U
cdlemn11a.s ˙=LSSumU
cdlemn11a.f F=ιhT|hP=Q
cdlemn11a.g G=ιhT|hP=N
Assertion cdlemn11pre KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXN˙Q˙X

Proof

Step Hyp Ref Expression
1 cdlemn11a.b B=BaseK
2 cdlemn11a.l ˙=K
3 cdlemn11a.j ˙=joinK
4 cdlemn11a.a A=AtomsK
5 cdlemn11a.h H=LHypK
6 cdlemn11a.p P=ocKW
7 cdlemn11a.o O=hTIB
8 cdlemn11a.t T=LTrnKW
9 cdlemn11a.r R=trLKW
10 cdlemn11a.e E=TEndoKW
11 cdlemn11a.i I=DIsoBKW
12 cdlemn11a.J J=DIsoCKW
13 cdlemn11a.u U=DVecHKW
14 cdlemn11a.d +˙=+U
15 cdlemn11a.s ˙=LSSumU
16 cdlemn11a.f F=ιhT|hP=Q
17 cdlemn11a.g G=ιhT|hP=N
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 cdlemn11c KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXyJQzIXGIT=y+˙z
19 simp1 KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXKHLWH
20 simp21 KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXQA¬Q˙W
21 2 4 5 6 8 10 12 16 dicelval3 KHLWHQA¬Q˙WyJQsEy=sFs
22 19 20 21 syl2anc KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXyJQsEy=sFs
23 simp23 KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXXBX˙W
24 1 2 5 8 9 7 11 dibelval3 KHLWHXBX˙WzIXgTz=gORg˙X
25 19 23 24 syl2anc KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXzIXgTz=gORg˙X
26 22 25 anbi12d KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXyJQzIXsEy=sFsgTz=gORg˙X
27 reeanv sEgTy=sFsz=gORg˙XsEy=sFsgTz=gORg˙X
28 simpl1 KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXsEgTRg˙XGIT=sFs+˙gOKHLWH
29 simpl21 KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXsEgTRg˙XGIT=sFs+˙gOQA¬Q˙W
30 simpl22 KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXsEgTRg˙XGIT=sFs+˙gONA¬N˙W
31 simpl23 KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXsEgTRg˙XGIT=sFs+˙gOXBX˙W
32 simpr1r KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXsEgTRg˙XGIT=sFs+˙gOgT
33 simpr1l KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXsEgTRg˙XGIT=sFs+˙gOsE
34 simpr3 KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXsEgTRg˙XGIT=sFs+˙gOGIT=sFs+˙gO
35 1 2 4 5 6 7 8 10 13 14 16 17 cdlemn9 KHLWHQA¬Q˙WNA¬N˙WsEgTGIT=sFs+˙gOgQ=N
36 28 29 30 33 32 34 35 syl123anc KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXsEgTRg˙XGIT=sFs+˙gOgQ=N
37 simpr2 KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXsEgTRg˙XGIT=sFs+˙gORg˙X
38 1 2 3 4 5 8 9 cdlemn10 KHLWHQA¬Q˙WNA¬N˙WXBX˙WgTgQ=NRg˙XN˙Q˙X
39 28 29 30 31 32 36 37 38 syl133anc KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXsEgTRg˙XGIT=sFs+˙gON˙Q˙X
40 39 3exp2 KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXsEgTRg˙XGIT=sFs+˙gON˙Q˙X
41 oveq12 y=sFsz=gOy+˙z=sFs+˙gO
42 41 eqeq2d y=sFsz=gOGIT=y+˙zGIT=sFs+˙gO
43 42 imbi1d y=sFsz=gOGIT=y+˙zN˙Q˙XGIT=sFs+˙gON˙Q˙X
44 43 imbi2d y=sFsz=gORg˙XGIT=y+˙zN˙Q˙XRg˙XGIT=sFs+˙gON˙Q˙X
45 44 biimprd y=sFsz=gORg˙XGIT=sFs+˙gON˙Q˙XRg˙XGIT=y+˙zN˙Q˙X
46 45 com23 y=sFsz=gORg˙XRg˙XGIT=sFs+˙gON˙Q˙XGIT=y+˙zN˙Q˙X
47 46 impr y=sFsz=gORg˙XRg˙XGIT=sFs+˙gON˙Q˙XGIT=y+˙zN˙Q˙X
48 47 com12 Rg˙XGIT=sFs+˙gON˙Q˙Xy=sFsz=gORg˙XGIT=y+˙zN˙Q˙X
49 40 48 syl6 KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXsEgTy=sFsz=gORg˙XGIT=y+˙zN˙Q˙X
50 49 rexlimdvv KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXsEgTy=sFsz=gORg˙XGIT=y+˙zN˙Q˙X
51 27 50 biimtrrid KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXsEy=sFsgTz=gORg˙XGIT=y+˙zN˙Q˙X
52 26 51 sylbid KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXyJQzIXGIT=y+˙zN˙Q˙X
53 52 rexlimdvv KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXyJQzIXGIT=y+˙zN˙Q˙X
54 18 53 mpd KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXN˙Q˙X