Metamath Proof Explorer


Theorem cdlemn9

Description: Part of proof of Lemma N of Crawley p. 121 line 36. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn8.b B = Base K
cdlemn8.l ˙ = K
cdlemn8.a A = Atoms K
cdlemn8.h H = LHyp K
cdlemn8.p P = oc K W
cdlemn8.o O = h T I B
cdlemn8.t T = LTrn K W
cdlemn8.e E = TEndo K W
cdlemn8.u U = DVecH K W
cdlemn8.s + ˙ = + U
cdlemn8.f F = ι h T | h P = Q
cdlemn8.g G = ι h T | h P = R
Assertion cdlemn9 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O g Q = R

Proof

Step Hyp Ref Expression
1 cdlemn8.b B = Base K
2 cdlemn8.l ˙ = K
3 cdlemn8.a A = Atoms K
4 cdlemn8.h H = LHyp K
5 cdlemn8.p P = oc K W
6 cdlemn8.o O = h T I B
7 cdlemn8.t T = LTrn K W
8 cdlemn8.e E = TEndo K W
9 cdlemn8.u U = DVecH K W
10 cdlemn8.s + ˙ = + U
11 cdlemn8.f F = ι h T | h P = Q
12 cdlemn8.g G = ι h T | h P = R
13 1 2 3 4 5 6 7 8 9 10 11 12 cdlemn8 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O g = G F -1
14 13 fveq1d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O g Q = G F -1 Q
15 simp1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O K HL W H
16 2 3 4 5 lhpocnel2 K HL W H P A ¬ P ˙ W
17 16 3ad2ant1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O P A ¬ P ˙ W
18 simp2l K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O Q A ¬ Q ˙ W
19 2 3 4 7 11 ltrniotacl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T
20 15 17 18 19 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O F T
21 1 4 7 ltrn1o K HL W H F T F : B 1-1 onto B
22 15 20 21 syl2anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O F : B 1-1 onto B
23 f1ocnv F : B 1-1 onto B F -1 : B 1-1 onto B
24 f1of F -1 : B 1-1 onto B F -1 : B B
25 22 23 24 3syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O F -1 : B B
26 simp2ll K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O Q A
27 1 3 atbase Q A Q B
28 26 27 syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O Q B
29 fvco3 F -1 : B B Q B G F -1 Q = G F -1 Q
30 25 28 29 syl2anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O G F -1 Q = G F -1 Q
31 2 3 4 7 11 ltrniotacnvval K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F -1 Q = P
32 15 17 18 31 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O F -1 Q = P
33 32 fveq2d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O G F -1 Q = G P
34 simp2r K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O R A ¬ R ˙ W
35 2 3 4 7 12 ltrniotaval K HL W H P A ¬ P ˙ W R A ¬ R ˙ W G P = R
36 15 17 34 35 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O G P = R
37 33 36 eqtrd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O G F -1 Q = R
38 14 30 37 3eqtrd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T G I T = s F s + ˙ g O g Q = R