Metamath Proof Explorer


Theorem chscllem1

Description: Lemma for chscl . (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses chscl.1 φAC
chscl.2 φBC
chscl.3 φBA
chscl.4 φH:A+B
chscl.5 φHvu
chscl.6 F=nprojAHn
Assertion chscllem1 φF:A

Proof

Step Hyp Ref Expression
1 chscl.1 φAC
2 chscl.2 φBC
3 chscl.3 φBA
4 chscl.4 φH:A+B
5 chscl.5 φHvu
6 chscl.6 F=nprojAHn
7 eqid projAHn=projAHn
8 1 adantr φnAC
9 4 ffvelcdmda φnHnA+B
10 chsh BCBS
11 2 10 syl φBS
12 chsh ACAS
13 1 12 syl φAS
14 shocsh ASAS
15 13 14 syl φAS
16 shless BSASASBAB+AA+A
17 11 15 13 3 16 syl31anc φB+AA+A
18 shscom ASBSA+B=B+A
19 13 11 18 syl2anc φA+B=B+A
20 shscom ASASA+A=A+A
21 13 15 20 syl2anc φA+A=A+A
22 17 19 21 3sstr4d φA+BA+A
23 22 sselda φHnA+BHnA+A
24 9 23 syldan φnHnA+A
25 pjpreeq ACHnA+AprojAHn=projAHnprojAHnAxAHn=projAHn+x
26 8 24 25 syl2anc φnprojAHn=projAHnprojAHnAxAHn=projAHn+x
27 7 26 mpbii φnprojAHnAxAHn=projAHn+x
28 27 simpld φnprojAHnA
29 28 6 fmptd φF:A