Metamath Proof Explorer


Theorem chscllem2

Description: Lemma for chscl . (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses chscl.1 φAC
chscl.2 φBC
chscl.3 φBA
chscl.4 φH:A+B
chscl.5 φHvu
chscl.6 F=nprojAHn
Assertion chscllem2 φFdomv

Proof

Step Hyp Ref Expression
1 chscl.1 φAC
2 chscl.2 φBC
3 chscl.3 φBA
4 chscl.4 φH:A+B
5 chscl.5 φHvu
6 chscl.6 F=nprojAHn
7 1 2 3 4 5 6 chscllem1 φF:A
8 chss ACA
9 1 8 syl φA
10 7 9 fssd φF:
11 hlimcaui HvuHCauchy
12 5 11 syl φHCauchy
13 hcaucvg HCauchyx+jkjnormHj-Hk<x
14 12 13 sylan φx+jkjnormHj-Hk<x
15 eluznn jkjk
16 15 adantll φx+jkjk
17 chsh ACAS
18 1 17 syl φAS
19 chsh BCBS
20 2 19 syl φBS
21 shscl ASBSA+BS
22 18 20 21 syl2anc φA+BS
23 shss A+BSA+B
24 22 23 syl φA+B
25 24 adantr φjA+B
26 4 ffvelcdmda φjHjA+B
27 25 26 sseldd φjHj
28 27 adantrr φjkHj
29 4 24 fssd φH:
30 29 adantr φjkH:
31 simprr φjkk
32 30 31 ffvelcdmd φjkHk
33 hvsubcl HjHkHj-Hk
34 28 32 33 syl2anc φjkHj-Hk
35 9 adantr φjA
36 7 ffvelcdmda φjFjA
37 35 36 sseldd φjFj
38 37 adantrr φjkFj
39 9 adantr φjkA
40 7 adantr φjkF:A
41 40 31 ffvelcdmd φjkFkA
42 39 41 sseldd φjkFk
43 hvsubcl FjFkFj-Fk
44 38 42 43 syl2anc φjkFj-Fk
45 hvsubcl Hj-HkFj-FkHj-Hk-Fj-Fk
46 34 44 45 syl2anc φjkHj-Hk-Fj-Fk
47 normcl Hj-Hk-Fj-FknormHj-Hk-Fj-Fk
48 46 47 syl φjknormHj-Hk-Fj-Fk
49 48 sqge0d φjk0normHj-Hk-Fj-Fk2
50 normcl Fj-FknormFj-Fk
51 44 50 syl φjknormFj-Fk
52 51 resqcld φjknormFj-Fk2
53 48 resqcld φjknormHj-Hk-Fj-Fk2
54 52 53 addge01d φjk0normHj-Hk-Fj-Fk2normFj-Fk2normFj-Fk2+normHj-Hk-Fj-Fk2
55 49 54 mpbid φjknormFj-Fk2normFj-Fk2+normHj-Hk-Fj-Fk2
56 18 adantr φjkAS
57 36 adantrr φjkFjA
58 shsubcl ASFjAFkAFj-FkA
59 56 57 41 58 syl3anc φjkFj-FkA
60 hvsubsub4 HjHkFjFkHj-Hk-Fj-Fk=Hj-Fj-Hk-Fk
61 28 32 38 42 60 syl22anc φjkHj-Hk-Fj-Fk=Hj-Fj-Hk-Fk
62 ocsh AAS
63 39 62 syl φjkAS
64 2fveq3 n=jprojAHn=projAHj
65 fvex projAHjV
66 64 6 65 fvmpt jFj=projAHj
67 66 eqcomd jprojAHj=Fj
68 67 adantl φjprojAHj=Fj
69 1 adantr φjAC
70 9 62 syl φAS
71 shless BSASASBAB+AA+A
72 20 70 18 3 71 syl31anc φB+AA+A
73 shscom ASBSA+B=B+A
74 18 20 73 syl2anc φA+B=B+A
75 shscom ASASA+A=A+A
76 18 70 75 syl2anc φA+A=A+A
77 72 74 76 3sstr4d φA+BA+A
78 77 adantr φjA+BA+A
79 78 26 sseldd φjHjA+A
80 pjpreeq ACHjA+AprojAHj=FjFjAxAHj=Fj+x
81 69 79 80 syl2anc φjprojAHj=FjFjAxAHj=Fj+x
82 68 81 mpbid φjFjAxAHj=Fj+x
83 82 simprd φjxAHj=Fj+x
84 27 adantr φjxAHj
85 37 adantr φjxAFj
86 shss ASA
87 70 86 syl φA
88 87 adantr φjA
89 88 sselda φjxAx
90 hvsubadd HjFjxHj-Fj=xFj+x=Hj
91 84 85 89 90 syl3anc φjxAHj-Fj=xFj+x=Hj
92 eqcom x=Hj-FjHj-Fj=x
93 eqcom Hj=Fj+xFj+x=Hj
94 91 92 93 3bitr4g φjxAx=Hj-FjHj=Fj+x
95 94 rexbidva φjxAx=Hj-FjxAHj=Fj+x
96 83 95 mpbird φjxAx=Hj-Fj
97 risset Hj-FjAxAx=Hj-Fj
98 96 97 sylibr φjHj-FjA
99 98 adantrr φjkHj-FjA
100 eleq1w j=kjk
101 100 anbi2d j=kφjφk
102 fveq2 j=kHj=Hk
103 fveq2 j=kFj=Fk
104 102 103 oveq12d j=kHj-Fj=Hk-Fk
105 104 eleq1d j=kHj-FjAHk-FkA
106 101 105 imbi12d j=kφjHj-FjAφkHk-FkA
107 106 98 chvarvv φkHk-FkA
108 107 adantrl φjkHk-FkA
109 shsubcl ASHj-FjAHk-FkAHj-Fj-Hk-FkA
110 63 99 108 109 syl3anc φjkHj-Fj-Hk-FkA
111 61 110 eqeltrd φjkHj-Hk-Fj-FkA
112 shocorth ASFj-FkAHj-Hk-Fj-FkAFj-FkihHj-Hk-Fj-Fk=0
113 56 112 syl φjkFj-FkAHj-Hk-Fj-FkAFj-FkihHj-Hk-Fj-Fk=0
114 59 111 113 mp2and φjkFj-FkihHj-Hk-Fj-Fk=0
115 normpyth Fj-FkHj-Hk-Fj-FkFj-FkihHj-Hk-Fj-Fk=0normFj-Fk+Hj-Hk-Fj-Fk2=normFj-Fk2+normHj-Hk-Fj-Fk2
116 44 46 115 syl2anc φjkFj-FkihHj-Hk-Fj-Fk=0normFj-Fk+Hj-Hk-Fj-Fk2=normFj-Fk2+normHj-Hk-Fj-Fk2
117 114 116 mpd φjknormFj-Fk+Hj-Hk-Fj-Fk2=normFj-Fk2+normHj-Hk-Fj-Fk2
118 hvpncan3 Fj-FkHj-HkFj-Fk+Hj-Hk-Fj-Fk=Hj-Hk
119 44 34 118 syl2anc φjkFj-Fk+Hj-Hk-Fj-Fk=Hj-Hk
120 119 fveq2d φjknormFj-Fk+Hj-Hk-Fj-Fk=normHj-Hk
121 120 oveq1d φjknormFj-Fk+Hj-Hk-Fj-Fk2=normHj-Hk2
122 117 121 eqtr3d φjknormFj-Fk2+normHj-Hk-Fj-Fk2=normHj-Hk2
123 55 122 breqtrd φjknormFj-Fk2normHj-Hk2
124 normcl Hj-HknormHj-Hk
125 34 124 syl φjknormHj-Hk
126 normge0 Fj-Fk0normFj-Fk
127 44 126 syl φjk0normFj-Fk
128 normge0 Hj-Hk0normHj-Hk
129 34 128 syl φjk0normHj-Hk
130 51 125 127 129 le2sqd φjknormFj-FknormHj-HknormFj-Fk2normHj-Hk2
131 123 130 mpbird φjknormFj-FknormHj-Hk
132 131 adantlr φx+jknormFj-FknormHj-Hk
133 51 adantlr φx+jknormFj-Fk
134 125 adantlr φx+jknormHj-Hk
135 rpre x+x
136 135 ad2antlr φx+jkx
137 lelttr normFj-FknormHj-HkxnormFj-FknormHj-HknormHj-Hk<xnormFj-Fk<x
138 133 134 136 137 syl3anc φx+jknormFj-FknormHj-HknormHj-Hk<xnormFj-Fk<x
139 132 138 mpand φx+jknormHj-Hk<xnormFj-Fk<x
140 139 anassrs φx+jknormHj-Hk<xnormFj-Fk<x
141 16 140 syldan φx+jkjnormHj-Hk<xnormFj-Fk<x
142 141 ralimdva φx+jkjnormHj-Hk<xkjnormFj-Fk<x
143 142 reximdva φx+jkjnormHj-Hk<xjkjnormFj-Fk<x
144 14 143 mpd φx+jkjnormFj-Fk<x
145 144 ralrimiva φx+jkjnormFj-Fk<x
146 hcau FCauchyF:x+jkjnormFj-Fk<x
147 10 145 146 sylanbrc φFCauchy
148 ax-hcompl FCauchyxFvx
149 hlimf v:domv
150 ffn v:domvvFndomv
151 149 150 ax-mp vFndomv
152 fnbr vFndomvFvxFdomv
153 151 152 mpan FvxFdomv
154 153 rexlimivw xFvxFdomv
155 147 148 154 3syl φFdomv