Metamath Proof Explorer


Theorem clatl

Description: A complete lattice is a lattice. (Contributed by NM, 18-Sep-2011) TODO: use eqrelrdv2 to shorten proof and eliminate joindmss and meetdmss ?

Ref Expression
Assertion clatl KCLatKLat

Proof

Step Hyp Ref Expression
1 eqid BaseK=BaseK
2 eqid joinK=joinK
3 simpl KPosetdomlubK=𝒫BaseKKPoset
4 1 2 3 joindmss KPosetdomlubK=𝒫BaseKdomjoinKBaseK×BaseK
5 relxp RelBaseK×BaseK
6 5 a1i KPosetdomlubK=𝒫BaseKRelBaseK×BaseK
7 opelxp xyBaseK×BaseKxBaseKyBaseK
8 vex xV
9 vex yV
10 8 9 prss xBaseKyBaseKxyBaseK
11 7 10 sylbb xyBaseK×BaseKxyBaseK
12 prex xyV
13 12 elpw xy𝒫BaseKxyBaseK
14 11 13 sylibr xyBaseK×BaseKxy𝒫BaseK
15 eleq2 domlubK=𝒫BaseKxydomlubKxy𝒫BaseK
16 14 15 imbitrrid domlubK=𝒫BaseKxyBaseK×BaseKxydomlubK
17 16 adantl KPosetdomlubK=𝒫BaseKxyBaseK×BaseKxydomlubK
18 eqid lubK=lubK
19 8 a1i KPosetdomlubK=𝒫BaseKxV
20 9 a1i KPosetdomlubK=𝒫BaseKyV
21 18 2 3 19 20 joindef KPosetdomlubK=𝒫BaseKxydomjoinKxydomlubK
22 17 21 sylibrd KPosetdomlubK=𝒫BaseKxyBaseK×BaseKxydomjoinK
23 6 22 relssdv KPosetdomlubK=𝒫BaseKBaseK×BaseKdomjoinK
24 4 23 eqssd KPosetdomlubK=𝒫BaseKdomjoinK=BaseK×BaseK
25 24 ex KPosetdomlubK=𝒫BaseKdomjoinK=BaseK×BaseK
26 eqid meetK=meetK
27 simpl KPosetdomglbK=𝒫BaseKKPoset
28 1 26 27 meetdmss KPosetdomglbK=𝒫BaseKdommeetKBaseK×BaseK
29 5 a1i KPosetdomglbK=𝒫BaseKRelBaseK×BaseK
30 eleq2 domglbK=𝒫BaseKxydomglbKxy𝒫BaseK
31 14 30 imbitrrid domglbK=𝒫BaseKxyBaseK×BaseKxydomglbK
32 31 adantl KPosetdomglbK=𝒫BaseKxyBaseK×BaseKxydomglbK
33 eqid glbK=glbK
34 8 a1i KPosetdomglbK=𝒫BaseKxV
35 9 a1i KPosetdomglbK=𝒫BaseKyV
36 33 26 27 34 35 meetdef KPosetdomglbK=𝒫BaseKxydommeetKxydomglbK
37 32 36 sylibrd KPosetdomglbK=𝒫BaseKxyBaseK×BaseKxydommeetK
38 29 37 relssdv KPosetdomglbK=𝒫BaseKBaseK×BaseKdommeetK
39 28 38 eqssd KPosetdomglbK=𝒫BaseKdommeetK=BaseK×BaseK
40 39 ex KPosetdomglbK=𝒫BaseKdommeetK=BaseK×BaseK
41 25 40 anim12d KPosetdomlubK=𝒫BaseKdomglbK=𝒫BaseKdomjoinK=BaseK×BaseKdommeetK=BaseK×BaseK
42 41 imdistani KPosetdomlubK=𝒫BaseKdomglbK=𝒫BaseKKPosetdomjoinK=BaseK×BaseKdommeetK=BaseK×BaseK
43 1 18 33 isclat KCLatKPosetdomlubK=𝒫BaseKdomglbK=𝒫BaseK
44 1 2 26 islat KLatKPosetdomjoinK=BaseK×BaseKdommeetK=BaseK×BaseK
45 42 43 44 3imtr4i KCLatKLat