Description: A complete lattice is a lattice. (Contributed by NM, 18-Sep-2011) TODO: use eqrelrdv2 to shorten proof and eliminate joindmss and meetdmss ?
Ref | Expression | ||
---|---|---|---|
Assertion | clatl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | simpl | |
|
4 | 1 2 3 | joindmss | |
5 | relxp | |
|
6 | 5 | a1i | |
7 | opelxp | |
|
8 | vex | |
|
9 | vex | |
|
10 | 8 9 | prss | |
11 | 7 10 | sylbb | |
12 | prex | |
|
13 | 12 | elpw | |
14 | 11 13 | sylibr | |
15 | eleq2 | |
|
16 | 14 15 | imbitrrid | |
17 | 16 | adantl | |
18 | eqid | |
|
19 | 8 | a1i | |
20 | 9 | a1i | |
21 | 18 2 3 19 20 | joindef | |
22 | 17 21 | sylibrd | |
23 | 6 22 | relssdv | |
24 | 4 23 | eqssd | |
25 | 24 | ex | |
26 | eqid | |
|
27 | simpl | |
|
28 | 1 26 27 | meetdmss | |
29 | 5 | a1i | |
30 | eleq2 | |
|
31 | 14 30 | imbitrrid | |
32 | 31 | adantl | |
33 | eqid | |
|
34 | 8 | a1i | |
35 | 9 | a1i | |
36 | 33 26 27 34 35 | meetdef | |
37 | 32 36 | sylibrd | |
38 | 29 37 | relssdv | |
39 | 28 38 | eqssd | |
40 | 39 | ex | |
41 | 25 40 | anim12d | |
42 | 41 | imdistani | |
43 | 1 18 33 | isclat | |
44 | 1 2 26 | islat | |
45 | 42 43 44 | 3imtr4i | |