Metamath Proof Explorer


Theorem climlec3

Description: Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Hypotheses climlec3.1 Z=M
climlec3.2 φM
climlec3.3 φB
climlec3.4 φFA
climlec3.5 φkZFk
climlec3.6 φkZFkB
Assertion climlec3 φAB

Proof

Step Hyp Ref Expression
1 climlec3.1 Z=M
2 climlec3.2 φM
3 climlec3.3 φB
4 climlec3.4 φFA
5 climlec3.5 φkZFk
6 climlec3.6 φkZFkB
7 3 renegcld φB
8 0cnd φ0
9 1 fvexi ZV
10 9 mptex mZFmV
11 10 a1i φmZFmV
12 5 recnd φkZFk
13 eqid mZFm=mZFm
14 fveq2 m=kFm=Fk
15 14 negeqd m=kFm=Fk
16 simpr φkZkZ
17 5 renegcld φkZFk
18 13 15 16 17 fvmptd3 φkZmZFmk=Fk
19 df-neg Fk=0Fk
20 18 19 eqtrdi φkZmZFmk=0Fk
21 1 2 4 8 11 12 20 climsubc2 φmZFm0A
22 df-neg A=0A
23 21 22 breqtrrdi φmZFmA
24 18 17 eqeltrd φkZmZFmk
25 3 adantr φkZB
26 5 25 lenegd φkZFkBBFk
27 6 26 mpbid φkZBFk
28 27 18 breqtrrd φkZBmZFmk
29 1 2 7 23 24 28 climlec2 φBA
30 1 2 4 5 climrecl φA
31 30 3 lenegd φABBA
32 29 31 mpbird φAB