Metamath Proof Explorer


Theorem climlimsupcex

Description: Counterexample for climlimsup , showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn and its comment). (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climlimsupcex.1 ¬M
climlimsupcex.2 Z=M
climlimsupcex.3 F=
Assertion climlimsupcex ¬−∞F:ZFdom¬Flim supF

Proof

Step Hyp Ref Expression
1 climlimsupcex.1 ¬M
2 climlimsupcex.2 Z=M
3 climlimsupcex.3 F=
4 f0 :
5 uz0 ¬MM=
6 1 5 ax-mp M=
7 2 6 eqtri Z=
8 3 7 feq12i F:Z:
9 4 8 mpbir F:Z
10 9 a1i ¬−∞F:Z
11 climrel Rel
12 11 a1i Rel
13 0cnv
14 3 13 eqbrtrid F
15 releldm RelFFdom
16 12 14 15 syl2anc Fdom
17 16 adantr ¬−∞Fdom
18 13 adantr Flim supF
19 18 adantlr ¬−∞Flim supF
20 simpr Flim supF
21 3 fveq2i lim supF=lim sup
22 limsup0 lim sup=−∞
23 21 22 eqtri lim supF=−∞
24 3 23 breq12i Flim supF−∞
25 24 biimpi Flim supF−∞
26 25 adantr Flim supF−∞
27 climuni −∞=−∞
28 20 26 27 syl2anc Flim supF=−∞
29 28 adantll ¬−∞Flim supF=−∞
30 nelneq ¬−∞¬=−∞
31 30 ad2antrr ¬−∞Flim supF¬=−∞
32 29 31 pm2.65da ¬−∞Flim supF¬
33 19 32 pm2.65da ¬−∞¬Flim supF
34 10 17 33 3jca ¬−∞F:ZFdom¬Flim supF