Description: Counterexample for climlimsup , showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn and its comment). (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climlimsupcex.1 | |
|
climlimsupcex.2 | |
||
climlimsupcex.3 | |
||
Assertion | climlimsupcex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climlimsupcex.1 | |
|
2 | climlimsupcex.2 | |
|
3 | climlimsupcex.3 | |
|
4 | f0 | |
|
5 | uz0 | |
|
6 | 1 5 | ax-mp | |
7 | 2 6 | eqtri | |
8 | 3 7 | feq12i | |
9 | 4 8 | mpbir | |
10 | 9 | a1i | |
11 | climrel | |
|
12 | 11 | a1i | |
13 | 0cnv | |
|
14 | 3 13 | eqbrtrid | |
15 | releldm | |
|
16 | 12 14 15 | syl2anc | |
17 | 16 | adantr | |
18 | 13 | adantr | |
19 | 18 | adantlr | |
20 | simpr | |
|
21 | 3 | fveq2i | |
22 | limsup0 | |
|
23 | 21 22 | eqtri | |
24 | 3 23 | breq12i | |
25 | 24 | biimpi | |
26 | 25 | adantr | |
27 | climuni | |
|
28 | 20 26 27 | syl2anc | |
29 | 28 | adantll | |
30 | nelneq | |
|
31 | 30 | ad2antrr | |
32 | 29 31 | pm2.65da | |
33 | 19 32 | pm2.65da | |
34 | 10 17 33 | 3jca | |