| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climlimsupcex.1 |  | 
						
							| 2 |  | climlimsupcex.2 |  | 
						
							| 3 |  | climlimsupcex.3 |  | 
						
							| 4 |  | f0 |  | 
						
							| 5 |  | uz0 |  | 
						
							| 6 | 1 5 | ax-mp |  | 
						
							| 7 | 2 6 | eqtri |  | 
						
							| 8 | 3 7 | feq12i |  | 
						
							| 9 | 4 8 | mpbir |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 |  | climrel |  | 
						
							| 12 | 11 | a1i |  | 
						
							| 13 |  | 0cnv |  | 
						
							| 14 | 3 13 | eqbrtrid |  | 
						
							| 15 |  | releldm |  | 
						
							| 16 | 12 14 15 | syl2anc |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 13 | adantr |  | 
						
							| 19 | 18 | adantlr |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 | 3 | fveq2i |  | 
						
							| 22 |  | limsup0 |  | 
						
							| 23 | 21 22 | eqtri |  | 
						
							| 24 | 3 23 | breq12i |  | 
						
							| 25 | 24 | biimpi |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 |  | climuni |  | 
						
							| 28 | 20 26 27 | syl2anc |  | 
						
							| 29 | 28 | adantll |  | 
						
							| 30 |  | nelneq |  | 
						
							| 31 | 30 | ad2antrr |  | 
						
							| 32 | 29 31 | pm2.65da |  | 
						
							| 33 | 19 32 | pm2.65da |  | 
						
							| 34 | 10 17 33 | 3jca |  |