Metamath Proof Explorer


Theorem climrec

Description: Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climrec.1 Z=M
climrec.2 φM
climrec.3 φGA
climrec.4 φA0
climrec.5 φkZGk0
climrec.6 φkZHk=1Gk
climrec.7 φHW
Assertion climrec φH1A

Proof

Step Hyp Ref Expression
1 climrec.1 Z=M
2 climrec.2 φM
3 climrec.3 φGA
4 climrec.4 φA0
5 climrec.5 φkZGk0
6 climrec.6 φkZHk=1Gk
7 climrec.7 φHW
8 climcl GAA
9 3 8 syl φA
10 4 neneqd φ¬A=0
11 c0ex 0V
12 11 elsn2 A0A=0
13 10 12 sylnibr φ¬A0
14 9 13 eldifd φA0
15 eqidd φz0w01w=w01w
16 simpr φz0w=zw=z
17 16 oveq2d φz0w=z1w=1z
18 simpr φz0z0
19 18 eldifad φz0z
20 eldifsni z0z0
21 20 adantl φz0z0
22 19 21 reccld φz01z
23 15 17 18 22 fvmptd φz0w01wz=1z
24 23 22 eqeltrd φz0w01wz
25 eqid if1Ax1AxA2=if1Ax1AxA2
26 25 reccn2 A0x+y+z0zA<y1z1A<x
27 14 26 sylan φx+y+z0zA<y1z1A<x
28 eqidd z0w01w=w01w
29 simpr z0w=zw=z
30 29 oveq2d z0w=z1w=1z
31 id z0z0
32 eldifi z0z
33 32 20 reccld z01z
34 28 30 31 33 fvmptd z0w01wz=1z
35 34 ad2antlr φx+z0zA<y1z1A<xz0zA<yw01wz=1z
36 eqidd φw01w=w01w
37 simpr φw=Aw=A
38 37 oveq2d φw=A1w=1A
39 9 4 reccld φ1A
40 36 38 14 39 fvmptd φw01wA=1A
41 40 ad4antr φx+z0zA<y1z1A<xz0zA<yw01wA=1A
42 35 41 oveq12d φx+z0zA<y1z1A<xz0zA<yw01wzw01wA=1z1A
43 42 fveq2d φx+z0zA<y1z1A<xz0zA<yw01wzw01wA=1z1A
44 31 ad2antlr φx+z0zA<y1z1A<xz0zA<yz0
45 simpr φx+z0zA<y1z1A<xz0zA<yzA<y
46 simpllr φx+z0zA<y1z1A<xz0zA<yz0zA<y1z1A<x
47 44 45 46 mp2d φx+z0zA<y1z1A<xz0zA<y1z1A<x
48 43 47 eqbrtrd φx+z0zA<y1z1A<xz0zA<yw01wzw01wA<x
49 48 exp41 φx+z0zA<y1z1A<xz0zA<yw01wzw01wA<x
50 49 ralimdv2 φx+z0zA<y1z1A<xz0zA<yw01wzw01wA<x
51 50 reximdv φx+y+z0zA<y1z1A<xy+z0zA<yw01wzw01wA<x
52 27 51 mpd φx+y+z0zA<yw01wzw01wA<x
53 eqidd φkZw01w=w01w
54 oveq2 w=Gk1w=1Gk
55 54 adantl φkZw=Gk1w=1Gk
56 5 eldifad φkZGk
57 eldifsni Gk0Gk0
58 5 57 syl φkZGk0
59 56 58 reccld φkZ1Gk
60 53 55 5 59 fvmptd φkZw01wGk=1Gk
61 6 60 eqtr4d φkZHk=w01wGk
62 1 2 14 24 3 7 52 5 61 climcn1 φHw01wA
63 62 40 breqtrd φH1A