Metamath Proof Explorer


Theorem climsqz2

Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008) (Revised by Mario Carneiro, 3-Feb-2014)

Ref Expression
Hypotheses climadd.1 Z=M
climadd.2 φM
climadd.4 φFA
climsqz.5 φGW
climsqz.6 φkZFk
climsqz.7 φkZGk
climsqz2.8 φkZGkFk
climsqz2.9 φkZAGk
Assertion climsqz2 φGA

Proof

Step Hyp Ref Expression
1 climadd.1 Z=M
2 climadd.2 φM
3 climadd.4 φFA
4 climsqz.5 φGW
5 climsqz.6 φkZFk
6 climsqz.7 φkZGk
7 climsqz2.8 φkZGkFk
8 climsqz2.9 φkZAGk
9 2 adantr φx+M
10 simpr φx+x+
11 eqidd φx+kZFk=Fk
12 3 adantr φx+FA
13 1 9 10 11 12 climi2 φx+jZkjFkA<x
14 1 uztrn2 jZkjkZ
15 1 2 3 5 climrecl φA
16 15 adantr φkZA
17 6 5 16 7 lesub1dd φkZGkAFkA
18 16 6 8 abssubge0d φkZGkA=GkA
19 16 6 5 8 7 letrd φkZAFk
20 16 5 19 abssubge0d φkZFkA=FkA
21 17 18 20 3brtr4d φkZGkAFkA
22 21 adantlr φx+kZGkAFkA
23 6 adantlr φx+kZGk
24 15 ad2antrr φx+kZA
25 23 24 resubcld φx+kZGkA
26 25 recnd φx+kZGkA
27 26 abscld φx+kZGkA
28 5 adantlr φx+kZFk
29 28 24 resubcld φx+kZFkA
30 29 recnd φx+kZFkA
31 30 abscld φx+kZFkA
32 rpre x+x
33 32 ad2antlr φx+kZx
34 lelttr GkAFkAxGkAFkAFkA<xGkA<x
35 27 31 33 34 syl3anc φx+kZGkAFkAFkA<xGkA<x
36 22 35 mpand φx+kZFkA<xGkA<x
37 14 36 sylan2 φx+jZkjFkA<xGkA<x
38 37 anassrs φx+jZkjFkA<xGkA<x
39 38 ralimdva φx+jZkjFkA<xkjGkA<x
40 39 reximdva φx+jZkjFkA<xjZkjGkA<x
41 13 40 mpd φx+jZkjGkA<x
42 41 ralrimiva φx+jZkjGkA<x
43 eqidd φkZGk=Gk
44 15 recnd φA
45 6 recnd φkZGk
46 1 2 4 43 44 45 clim2c φGAx+jZkjGkA<x
47 42 46 mpbird φGA