| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwlkclwwlkf.c |
|
| 2 |
|
clwlkclwwlkf.f |
|
| 3 |
1 2
|
clwlkclwwlkf |
|
| 4 |
|
fveq2 |
|
| 5 |
|
2fveq3 |
|
| 6 |
5
|
oveq1d |
|
| 7 |
4 6
|
oveq12d |
|
| 8 |
|
id |
|
| 9 |
|
ovexd |
|
| 10 |
2 7 8 9
|
fvmptd3 |
|
| 11 |
|
fveq2 |
|
| 12 |
|
2fveq3 |
|
| 13 |
12
|
oveq1d |
|
| 14 |
11 13
|
oveq12d |
|
| 15 |
|
id |
|
| 16 |
|
ovexd |
|
| 17 |
2 14 15 16
|
fvmptd3 |
|
| 18 |
10 17
|
eqeqan12d |
|
| 19 |
18
|
adantl |
|
| 20 |
|
simplrl |
|
| 21 |
|
simplrr |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
1 22 23
|
clwlkclwwlkflem |
|
| 25 |
|
wlklenvm1 |
|
| 26 |
25
|
eqcomd |
|
| 27 |
26
|
3ad2ant1 |
|
| 28 |
24 27
|
syl |
|
| 29 |
28
|
adantr |
|
| 30 |
29
|
oveq2d |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
1 31 32
|
clwlkclwwlkflem |
|
| 34 |
|
wlklenvm1 |
|
| 35 |
34
|
eqcomd |
|
| 36 |
35
|
3ad2ant1 |
|
| 37 |
33 36
|
syl |
|
| 38 |
37
|
adantl |
|
| 39 |
38
|
oveq2d |
|
| 40 |
30 39
|
eqeq12d |
|
| 41 |
40
|
adantl |
|
| 42 |
41
|
biimpa |
|
| 43 |
20 21 42
|
3jca |
|
| 44 |
1 22 23 31 32
|
clwlkclwwlkf1lem2 |
|
| 45 |
|
simpl |
|
| 46 |
43 44 45
|
3syl |
|
| 47 |
1 22 23 31 32
|
clwlkclwwlkf1lem3 |
|
| 48 |
43 47
|
syl |
|
| 49 |
|
simpl |
|
| 50 |
|
wlkcpr |
|
| 51 |
50
|
biimpri |
|
| 52 |
51
|
3ad2ant1 |
|
| 53 |
24 52
|
syl |
|
| 54 |
|
wlkcpr |
|
| 55 |
54
|
biimpri |
|
| 56 |
55
|
3ad2ant1 |
|
| 57 |
33 56
|
syl |
|
| 58 |
53 57
|
anim12i |
|
| 59 |
58
|
adantl |
|
| 60 |
|
eqidd |
|
| 61 |
49 59 60
|
3jca |
|
| 62 |
61
|
adantr |
|
| 63 |
|
uspgr2wlkeq |
|
| 64 |
62 63
|
syl |
|
| 65 |
46 48 64
|
mpbir2and |
|
| 66 |
65
|
ex |
|
| 67 |
19 66
|
sylbid |
|
| 68 |
67
|
ralrimivva |
|
| 69 |
|
dff13 |
|
| 70 |
3 68 69
|
sylanbrc |
|