Metamath Proof Explorer


Theorem clwlkclwwlklem2fv1

Description: Lemma 4a for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 22-Jun-2018)

Ref Expression
Hypothesis clwlkclwwlklem2.f F=x0..^P1ifx<P2E-1PxPx+1E-1PxP0
Assertion clwlkclwwlklem2fv1 P0I0..^P2FI=E-1PIPI+1

Proof

Step Hyp Ref Expression
1 clwlkclwwlklem2.f F=x0..^P1ifx<P2E-1PxPx+1E-1PxP0
2 breq1 x=Ix<P2I<P2
3 fveq2 x=IPx=PI
4 fvoveq1 x=IPx+1=PI+1
5 3 4 preq12d x=IPxPx+1=PIPI+1
6 5 fveq2d x=IE-1PxPx+1=E-1PIPI+1
7 3 preq1d x=IPxP0=PIP0
8 7 fveq2d x=IE-1PxP0=E-1PIP0
9 2 6 8 ifbieq12d x=Iifx<P2E-1PxPx+1E-1PxP0=ifI<P2E-1PIPI+1E-1PIP0
10 elfzolt2 I0..^P2I<P2
11 10 adantl P0I0..^P2I<P2
12 11 iftrued P0I0..^P2ifI<P2E-1PIPI+1E-1PIP0=E-1PIPI+1
13 9 12 sylan9eqr P0I0..^P2x=Iifx<P2E-1PxPx+1E-1PxP0=E-1PIPI+1
14 nn0z P0P
15 2z 2
16 15 a1i P02
17 14 16 zsubcld P0P2
18 peano2zm PP1
19 14 18 syl P0P1
20 1red P01
21 2re 2
22 21 a1i P02
23 nn0re P0P
24 1le2 12
25 24 a1i P012
26 20 22 23 25 lesub2dd P0P2P1
27 eluz2 P1P2P2P1P2P1
28 17 19 26 27 syl3anbrc P0P1P2
29 fzoss2 P1P20..^P20..^P1
30 28 29 syl P00..^P20..^P1
31 30 sselda P0I0..^P2I0..^P1
32 fvexd P0I0..^P2E-1PIPI+1V
33 1 13 31 32 fvmptd2 P0I0..^P2FI=E-1PIPI+1