Description: Lemma 4a for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 22-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clwlkclwwlklem2.f | |
|
Assertion | clwlkclwwlklem2fv1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlkclwwlklem2.f | |
|
2 | breq1 | |
|
3 | fveq2 | |
|
4 | fvoveq1 | |
|
5 | 3 4 | preq12d | |
6 | 5 | fveq2d | |
7 | 3 | preq1d | |
8 | 7 | fveq2d | |
9 | 2 6 8 | ifbieq12d | |
10 | elfzolt2 | |
|
11 | 10 | adantl | |
12 | 11 | iftrued | |
13 | 9 12 | sylan9eqr | |
14 | nn0z | |
|
15 | 2z | |
|
16 | 15 | a1i | |
17 | 14 16 | zsubcld | |
18 | peano2zm | |
|
19 | 14 18 | syl | |
20 | 1red | |
|
21 | 2re | |
|
22 | 21 | a1i | |
23 | nn0re | |
|
24 | 1le2 | |
|
25 | 24 | a1i | |
26 | 20 22 23 25 | lesub2dd | |
27 | eluz2 | |
|
28 | 17 19 26 27 | syl3anbrc | |
29 | fzoss2 | |
|
30 | 28 29 | syl | |
31 | 30 | sselda | |
32 | fvexd | |
|
33 | 1 13 31 32 | fvmptd2 | |