Metamath Proof Explorer


Theorem cncfioobd

Description: A continuous function F on an open interval ( A (,) B ) with a finite right limit R in A and a finite left limit L in B is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses cncfioobd.a φA
cncfioobd.b φB
cncfioobd.f φF:ABcn
cncfioobd.l φLFlimB
cncfioobd.r φRFlimA
Assertion cncfioobd φxyABFyx

Proof

Step Hyp Ref Expression
1 cncfioobd.a φA
2 cncfioobd.b φB
3 cncfioobd.f φF:ABcn
4 cncfioobd.l φLFlimB
5 cncfioobd.r φRFlimA
6 nfv zφ
7 eqid zABifz=ARifz=BLFz=zABifz=ARifz=BLFz
8 6 7 1 2 3 4 5 cncfiooicc φzABifz=ARifz=BLFz:ABcn
9 cniccbdd ABzABifz=ARifz=BLFz:ABcnxyABzABifz=ARifz=BLFzyx
10 1 2 8 9 syl3anc φxyABzABifz=ARifz=BLFzyx
11 nfv yφx
12 nfra1 yyABzABifz=ARifz=BLFzyx
13 11 12 nfan yφxyABzABifz=ARifz=BLFzyx
14 simpr φyAByAB
15 cncff F:ABcnF:AB
16 3 15 syl φF:AB
17 16 fdmd φdomF=AB
18 17 eqcomd φAB=domF
19 18 adantr φyABAB=domF
20 14 19 eleqtrd φyABydomF
21 1 adantr φydomFA
22 2 adantr φydomFB
23 16 adantr φydomFF:AB
24 simpr φydomFydomF
25 17 adantr φydomFdomF=AB
26 24 25 eleqtrd φydomFyAB
27 21 22 23 7 26 cncfioobdlem φydomFzABifz=ARifz=BLFzy=Fy
28 20 27 syldan φyABzABifz=ARifz=BLFzy=Fy
29 28 eqcomd φyABFy=zABifz=ARifz=BLFzy
30 29 fveq2d φyABFy=zABifz=ARifz=BLFzy
31 30 ad4ant14 φxyABzABifz=ARifz=BLFzyxyABFy=zABifz=ARifz=BLFzy
32 simplr φxyABzABifz=ARifz=BLFzyxyAByABzABifz=ARifz=BLFzyx
33 ioossicc ABAB
34 simpr φxyABzABifz=ARifz=BLFzyxyAByAB
35 33 34 sselid φxyABzABifz=ARifz=BLFzyxyAByAB
36 rspa yABzABifz=ARifz=BLFzyxyABzABifz=ARifz=BLFzyx
37 32 35 36 syl2anc φxyABzABifz=ARifz=BLFzyxyABzABifz=ARifz=BLFzyx
38 31 37 eqbrtrd φxyABzABifz=ARifz=BLFzyxyABFyx
39 38 ex φxyABzABifz=ARifz=BLFzyxyABFyx
40 13 39 ralrimi φxyABzABifz=ARifz=BLFzyxyABFyx
41 40 ex φxyABzABifz=ARifz=BLFzyxyABFyx
42 41 reximdva φxyABzABifz=ARifz=BLFzyxxyABFyx
43 10 42 mpd φxyABFyx