Metamath Proof Explorer


Theorem cnmpt2ip

Description: Continuity of inner product; analogue of cnmpt22f which cannot be used directly because .i is not a function. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cnmpt1ip.j J=TopOpenW
cnmpt1ip.c C=TopOpenfld
cnmpt1ip.h ,˙=𝑖W
cnmpt1ip.r φWCPreHil
cnmpt1ip.k φKTopOnX
cnmpt2ip.l φLTopOnY
cnmpt2ip.a φxX,yYAK×tLCnJ
cnmpt2ip.b φxX,yYBK×tLCnJ
Assertion cnmpt2ip φxX,yYA,˙BK×tLCnC

Proof

Step Hyp Ref Expression
1 cnmpt1ip.j J=TopOpenW
2 cnmpt1ip.c C=TopOpenfld
3 cnmpt1ip.h ,˙=𝑖W
4 cnmpt1ip.r φWCPreHil
5 cnmpt1ip.k φKTopOnX
6 cnmpt2ip.l φLTopOnY
7 cnmpt2ip.a φxX,yYAK×tLCnJ
8 cnmpt2ip.b φxX,yYBK×tLCnJ
9 txtopon KTopOnXLTopOnYK×tLTopOnX×Y
10 5 6 9 syl2anc φK×tLTopOnX×Y
11 cphngp WCPreHilWNrmGrp
12 ngptps WNrmGrpWTopSp
13 4 11 12 3syl φWTopSp
14 eqid BaseW=BaseW
15 14 1 istps WTopSpJTopOnBaseW
16 13 15 sylib φJTopOnBaseW
17 cnf2 K×tLTopOnX×YJTopOnBaseWxX,yYAK×tLCnJxX,yYA:X×YBaseW
18 10 16 7 17 syl3anc φxX,yYA:X×YBaseW
19 eqid xX,yYA=xX,yYA
20 19 fmpo xXyYABaseWxX,yYA:X×YBaseW
21 18 20 sylibr φxXyYABaseW
22 21 r19.21bi φxXyYABaseW
23 22 r19.21bi φxXyYABaseW
24 cnf2 K×tLTopOnX×YJTopOnBaseWxX,yYBK×tLCnJxX,yYB:X×YBaseW
25 10 16 8 24 syl3anc φxX,yYB:X×YBaseW
26 eqid xX,yYB=xX,yYB
27 26 fmpo xXyYBBaseWxX,yYB:X×YBaseW
28 25 27 sylibr φxXyYBBaseW
29 28 r19.21bi φxXyYBBaseW
30 29 r19.21bi φxXyYBBaseW
31 eqid ifW=ifW
32 14 3 31 ipfval ABaseWBBaseWAifWB=A,˙B
33 23 30 32 syl2anc φxXyYAifWB=A,˙B
34 33 3impa φxXyYAifWB=A,˙B
35 34 mpoeq3dva φxX,yYAifWB=xX,yYA,˙B
36 31 1 2 ipcn WCPreHilifWJ×tJCnC
37 4 36 syl φifWJ×tJCnC
38 5 6 7 8 37 cnmpt22f φxX,yYAifWBK×tLCnC
39 35 38 eqeltrrd φxX,yYA,˙BK×tLCnC