| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnmptk1.j |  | 
						
							| 2 |  | cnmptk1.k |  | 
						
							| 3 |  | cnmptk1.l |  | 
						
							| 4 |  | cnmptkp.a |  | 
						
							| 5 |  | cnmptkp.b |  | 
						
							| 6 |  | cnmptkp.c |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 5 | adantr |  | 
						
							| 9 | 6 | eleq1d |  | 
						
							| 10 | 2 | adantr |  | 
						
							| 11 |  | topontop |  | 
						
							| 12 | 3 11 | syl |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 |  | toptopon2 |  | 
						
							| 15 | 13 14 | sylib |  | 
						
							| 16 |  | topontop |  | 
						
							| 17 | 2 16 | syl |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 18 | xkotopon |  | 
						
							| 20 | 17 12 19 | syl2anc |  | 
						
							| 21 |  | cnf2 |  | 
						
							| 22 | 1 20 4 21 | syl3anc |  | 
						
							| 23 | 22 | fvmptelcdm |  | 
						
							| 24 |  | cnf2 |  | 
						
							| 25 | 10 15 23 24 | syl3anc |  | 
						
							| 26 | 7 | fmpt |  | 
						
							| 27 | 25 26 | sylibr |  | 
						
							| 28 | 9 27 8 | rspcdva |  | 
						
							| 29 | 7 6 8 28 | fvmptd3 |  | 
						
							| 30 | 29 | mpteq2dva |  | 
						
							| 31 |  | toponuni |  | 
						
							| 32 | 2 31 | syl |  | 
						
							| 33 | 5 32 | eleqtrd |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 34 | xkopjcn |  | 
						
							| 36 | 17 12 33 35 | syl3anc |  | 
						
							| 37 |  | fveq1 |  | 
						
							| 38 | 1 4 20 36 37 | cnmpt11 |  | 
						
							| 39 | 30 38 | eqeltrrd |  |