Description: Lemma for cnndv . (Contributed by Asger C. Ipsen, 25-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnndvlem1.t | |
|
cnndvlem1.f | |
||
cnndvlem1.w | |
||
Assertion | cnndvlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnndvlem1.t | |
|
2 | cnndvlem1.f | |
|
3 | cnndvlem1.w | |
|
4 | 3nn | |
|
5 | 4 | a1i | |
6 | neg1rr | |
|
7 | 6 | rexri | |
8 | 1re | |
|
9 | 8 | rexri | |
10 | halfre | |
|
11 | 10 | rexri | |
12 | 7 9 11 | 3pm3.2i | |
13 | neg1lt0 | |
|
14 | halfgt0 | |
|
15 | 13 14 | pm3.2i | |
16 | 0re | |
|
17 | 6 16 10 | lttri | |
18 | 15 17 | ax-mp | |
19 | halflt1 | |
|
20 | 18 19 | pm3.2i | |
21 | 12 20 | pm3.2i | |
22 | elioo3g | |
|
23 | 21 22 | mpbir | |
24 | 23 | a1i | |
25 | 1 2 3 5 24 | knoppcn2 | |
26 | 25 | mptru | |
27 | 2cn | |
|
28 | 27 | mullidi | |
29 | 2lt3 | |
|
30 | 28 29 | eqbrtri | |
31 | 2pos | |
|
32 | 4 | nnrei | |
33 | 2re | |
|
34 | 8 32 33 | ltmuldivi | |
35 | 31 34 | ax-mp | |
36 | 30 35 | mpbi | |
37 | 16 10 14 | ltleii | |
38 | 10 | absidi | |
39 | 37 38 | ax-mp | |
40 | 39 | oveq2i | |
41 | 4 | nncni | |
42 | 2ne0 | |
|
43 | 41 27 42 | divreci | |
44 | 43 | eqcomi | |
45 | 40 44 | eqtri | |
46 | 36 45 | breqtrri | |
47 | 46 | a1i | |
48 | 1 2 3 24 5 47 | knoppndv | |
49 | 48 | mptru | |
50 | 26 49 | pm3.2i | |