Metamath Proof Explorer


Theorem cnndvlem1

Description: Lemma for cnndv . (Contributed by Asger C. Ipsen, 25-Aug-2021)

Ref Expression
Hypotheses cnndvlem1.t T=xx+12x
cnndvlem1.f F=yn012nT23ny
cnndvlem1.w W=wi0Fwi
Assertion cnndvlem1 W:cndomW=

Proof

Step Hyp Ref Expression
1 cnndvlem1.t T=xx+12x
2 cnndvlem1.f F=yn012nT23ny
3 cnndvlem1.w W=wi0Fwi
4 3nn 3
5 4 a1i 3
6 neg1rr 1
7 6 rexri 1*
8 1re 1
9 8 rexri 1*
10 halfre 12
11 10 rexri 12*
12 7 9 11 3pm3.2i 1*1*12*
13 neg1lt0 1<0
14 halfgt0 0<12
15 13 14 pm3.2i 1<00<12
16 0re 0
17 6 16 10 lttri 1<00<121<12
18 15 17 ax-mp 1<12
19 halflt1 12<1
20 18 19 pm3.2i 1<1212<1
21 12 20 pm3.2i 1*1*12*1<1212<1
22 elioo3g 12111*1*12*1<1212<1
23 21 22 mpbir 1211
24 23 a1i 1211
25 1 2 3 5 24 knoppcn2 W:cn
26 25 mptru W:cn
27 2cn 2
28 27 mullidi 12=2
29 2lt3 2<3
30 28 29 eqbrtri 12<3
31 2pos 0<2
32 4 nnrei 3
33 2re 2
34 8 32 33 ltmuldivi 0<212<31<32
35 31 34 ax-mp 12<31<32
36 30 35 mpbi 1<32
37 16 10 14 ltleii 012
38 10 absidi 01212=12
39 37 38 ax-mp 12=12
40 39 oveq2i 312=312
41 4 nncni 3
42 2ne0 20
43 41 27 42 divreci 32=312
44 43 eqcomi 312=32
45 40 44 eqtri 312=32
46 36 45 breqtrri 1<312
47 46 a1i 1<312
48 1 2 3 24 5 47 knoppndv domW=
49 48 mptru domW=
50 26 49 pm3.2i W:cndomW=