Metamath Proof Explorer


Theorem cntnevol

Description: Counting and Lebesgue measures are different. (Contributed by Thierry Arnoux, 27-Jan-2017)

Ref Expression
Assertion cntnevol .𝒫Ovol

Proof

Step Hyp Ref Expression
1 ax-1ne0 10
2 1 a1i 1O10
3 snelpwi 1O1𝒫O
4 fvres 1𝒫O.𝒫O1=1
5 3 4 syl 1O.𝒫O1=1
6 1re 1
7 hashsng 11=1
8 6 7 ax-mp 1=1
9 5 8 eqtrdi 1O.𝒫O1=1
10 snssi 11
11 ovolsn 1vol*1=0
12 nulmbl 1vol*1=01domvol
13 10 11 12 syl2anc 11domvol
14 mblvol 1domvolvol1=vol*1
15 6 11 ax-mp vol*1=0
16 14 15 eqtrdi 1domvolvol1=0
17 6 13 16 mp2b vol1=0
18 17 a1i 1Ovol1=0
19 2 9 18 3netr4d 1O.𝒫O1vol1
20 fveq1 .𝒫O=vol.𝒫O1=vol1
21 20 necon3i .𝒫O1vol1.𝒫Ovol
22 19 21 syl 1O.𝒫Ovol
23 6 13 ax-mp 1domvol
24 23 biantrur ¬1dom.𝒫O1domvol¬1dom.𝒫O
25 snex 1V
26 25 elpw 1𝒫O1O
27 dmhashres dom.𝒫O=𝒫O
28 27 eleq2i 1dom.𝒫O1𝒫O
29 1ex 1V
30 29 snss 1O1O
31 26 28 30 3bitr4i 1dom.𝒫O1O
32 31 notbii ¬1dom.𝒫O¬1O
33 24 32 bitr3i 1domvol¬1dom.𝒫O¬1O
34 nelne1 1domvol¬1dom.𝒫Odomvoldom.𝒫O
35 33 34 sylbir ¬1Odomvoldom.𝒫O
36 35 necomd ¬1Odom.𝒫Odomvol
37 dmeq .𝒫O=voldom.𝒫O=domvol
38 37 necon3i dom.𝒫Odomvol.𝒫Ovol
39 36 38 syl ¬1O.𝒫Ovol
40 22 39 pm2.61i .𝒫Ovol