Metamath Proof Explorer


Theorem cntrsubgnsg

Description: A central subgroup is normal. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypothesis cntrnsg.z Z=CntrM
Assertion cntrsubgnsg XSubGrpMXZXNrmSGrpM

Proof

Step Hyp Ref Expression
1 cntrnsg.z Z=CntrM
2 simpl XSubGrpMXZXSubGrpM
3 simplr XSubGrpMXZxBaseMyXXZ
4 simprr XSubGrpMXZxBaseMyXyX
5 3 4 sseldd XSubGrpMXZxBaseMyXyZ
6 eqid BaseM=BaseM
7 eqid CntzM=CntzM
8 6 7 cntrval CntzMBaseM=CntrM
9 8 1 eqtr4i CntzMBaseM=Z
10 5 9 eleqtrrdi XSubGrpMXZxBaseMyXyCntzMBaseM
11 simprl XSubGrpMXZxBaseMyXxBaseM
12 eqid +M=+M
13 12 7 cntzi yCntzMBaseMxBaseMy+Mx=x+My
14 10 11 13 syl2anc XSubGrpMXZxBaseMyXy+Mx=x+My
15 14 oveq1d XSubGrpMXZxBaseMyXy+Mx-Mx=x+My-Mx
16 subgrcl XSubGrpMMGrp
17 16 ad2antrr XSubGrpMXZxBaseMyXMGrp
18 6 subgss XSubGrpMXBaseM
19 18 ad2antrr XSubGrpMXZxBaseMyXXBaseM
20 19 4 sseldd XSubGrpMXZxBaseMyXyBaseM
21 eqid -M=-M
22 6 12 21 grppncan MGrpyBaseMxBaseMy+Mx-Mx=y
23 17 20 11 22 syl3anc XSubGrpMXZxBaseMyXy+Mx-Mx=y
24 15 23 eqtr3d XSubGrpMXZxBaseMyXx+My-Mx=y
25 24 4 eqeltrd XSubGrpMXZxBaseMyXx+My-MxX
26 25 ralrimivva XSubGrpMXZxBaseMyXx+My-MxX
27 6 12 21 isnsg3 XNrmSGrpMXSubGrpMxBaseMyXx+My-MxX
28 2 26 27 sylanbrc XSubGrpMXZXNrmSGrpM