| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntrnsg.z |  | 
						
							| 2 |  | simpl |  | 
						
							| 3 |  | simplr |  | 
						
							| 4 |  | simprr |  | 
						
							| 5 | 3 4 | sseldd |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 6 7 | cntrval |  | 
						
							| 9 | 8 1 | eqtr4i |  | 
						
							| 10 | 5 9 | eleqtrrdi |  | 
						
							| 11 |  | simprl |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 12 7 | cntzi |  | 
						
							| 14 | 10 11 13 | syl2anc |  | 
						
							| 15 | 14 | oveq1d |  | 
						
							| 16 |  | subgrcl |  | 
						
							| 17 | 16 | ad2antrr |  | 
						
							| 18 | 6 | subgss |  | 
						
							| 19 | 18 | ad2antrr |  | 
						
							| 20 | 19 4 | sseldd |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 6 12 21 | grppncan |  | 
						
							| 23 | 17 20 11 22 | syl3anc |  | 
						
							| 24 | 15 23 | eqtr3d |  | 
						
							| 25 | 24 4 | eqeltrd |  | 
						
							| 26 | 25 | ralrimivva |  | 
						
							| 27 | 6 12 21 | isnsg3 |  | 
						
							| 28 | 2 26 27 | sylanbrc |  |