Description: If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014) Avoid ax-pow . (Revised by BTernaryTau, 9-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvfi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq | |
|
2 | 1 | eleq1d | |
3 | cnveq | |
|
4 | 3 | eleq1d | |
5 | cnveq | |
|
6 | 5 | eleq1d | |
7 | cnveq | |
|
8 | 7 | eleq1d | |
9 | cnv0 | |
|
10 | 0fin | |
|
11 | 9 10 | eqeltri | |
12 | cnvun | |
|
13 | elvv | |
|
14 | sneq | |
|
15 | cnveq | |
|
16 | vex | |
|
17 | vex | |
|
18 | 16 17 | cnvsn | |
19 | 15 18 | eqtrdi | |
20 | 14 19 | syl | |
21 | snfi | |
|
22 | 20 21 | eqeltrdi | |
23 | 22 | exlimivv | |
24 | 13 23 | sylbi | |
25 | dfdm4 | |
|
26 | dmsnn0 | |
|
27 | 26 | biimpri | |
28 | 27 | necon1bi | |
29 | 25 28 | eqtr3id | |
30 | relcnv | |
|
31 | relrn0 | |
|
32 | 30 31 | ax-mp | |
33 | 29 32 | sylibr | |
34 | 33 10 | eqeltrdi | |
35 | 24 34 | pm2.61i | |
36 | unfi | |
|
37 | 35 36 | mpan2 | |
38 | 12 37 | eqeltrid | |
39 | 38 | a1i | |
40 | 2 4 6 8 11 39 | findcard2 | |