Metamath Proof Explorer


Theorem cnvfi

Description: If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014) Avoid ax-pow . (Revised by BTernaryTau, 9-Sep-2024)

Ref Expression
Assertion cnvfi AFinA-1Fin

Proof

Step Hyp Ref Expression
1 cnveq x=x-1=-1
2 1 eleq1d x=x-1Fin-1Fin
3 cnveq x=yx-1=y-1
4 3 eleq1d x=yx-1Finy-1Fin
5 cnveq x=yzx-1=yz-1
6 5 eleq1d x=yzx-1Finyz-1Fin
7 cnveq x=Ax-1=A-1
8 7 eleq1d x=Ax-1FinA-1Fin
9 cnv0 -1=
10 0fin Fin
11 9 10 eqeltri -1Fin
12 cnvun yz-1=y-1z-1
13 elvv zV×Vuvz=uv
14 sneq z=uvz=uv
15 cnveq z=uvz-1=uv-1
16 vex uV
17 vex vV
18 16 17 cnvsn uv-1=vu
19 15 18 eqtrdi z=uvz-1=vu
20 14 19 syl z=uvz-1=vu
21 snfi vuFin
22 20 21 eqeltrdi z=uvz-1Fin
23 22 exlimivv uvz=uvz-1Fin
24 13 23 sylbi zV×Vz-1Fin
25 dfdm4 domz=ranz-1
26 dmsnn0 zV×Vdomz
27 26 biimpri domzzV×V
28 27 necon1bi ¬zV×Vdomz=
29 25 28 eqtr3id ¬zV×Vranz-1=
30 relcnv Relz-1
31 relrn0 Relz-1z-1=ranz-1=
32 30 31 ax-mp z-1=ranz-1=
33 29 32 sylibr ¬zV×Vz-1=
34 33 10 eqeltrdi ¬zV×Vz-1Fin
35 24 34 pm2.61i z-1Fin
36 unfi y-1Finz-1Finy-1z-1Fin
37 35 36 mpan2 y-1Finy-1z-1Fin
38 12 37 eqeltrid y-1Finyz-1Fin
39 38 a1i yFiny-1Finyz-1Fin
40 2 4 6 8 11 39 findcard2 AFinA-1Fin