Metamath Proof Explorer


Theorem coe1fval3

Description: Univariate power series coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses coe1fval.a A=coe1F
coe1f2.b B=BaseP
coe1f2.p P=PwSer1R
coe1fval3.g G=y01𝑜×y
Assertion coe1fval3 FBA=FG

Proof

Step Hyp Ref Expression
1 coe1fval.a A=coe1F
2 coe1f2.b B=BaseP
3 coe1f2.p P=PwSer1R
4 coe1fval3.g G=y01𝑜×y
5 1 coe1fval FBA=y0F1𝑜×y
6 eqid BaseR=BaseR
7 3 2 6 psr1basf FBF:01𝑜BaseR
8 ssv BaseRV
9 fss F:01𝑜BaseRBaseRVF:01𝑜V
10 7 8 9 sylancl FBF:01𝑜V
11 fconst6g y01𝑜×y:1𝑜0
12 11 adantl F:01𝑜Vy01𝑜×y:1𝑜0
13 nn0ex 0V
14 1oex 1𝑜V
15 13 14 elmap 1𝑜×y01𝑜1𝑜×y:1𝑜0
16 12 15 sylibr F:01𝑜Vy01𝑜×y01𝑜
17 4 a1i F:01𝑜VG=y01𝑜×y
18 id F:01𝑜VF:01𝑜V
19 18 feqmptd F:01𝑜VF=x01𝑜Fx
20 fveq2 x=1𝑜×yFx=F1𝑜×y
21 16 17 19 20 fmptco F:01𝑜VFG=y0F1𝑜×y
22 10 21 syl FBFG=y0F1𝑜×y
23 5 22 eqtr4d FBA=FG