Metamath Proof Explorer


Theorem coe1subfv

Description: A particular coefficient of a subtraction. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses coe1sub.y Y=Poly1R
coe1sub.b B=BaseY
coe1sub.p -˙=-Y
coe1sub.q N=-R
Assertion coe1subfv RRingFBGBX0coe1F-˙GX=coe1FXNcoe1GX

Proof

Step Hyp Ref Expression
1 coe1sub.y Y=Poly1R
2 coe1sub.b B=BaseY
3 coe1sub.p -˙=-Y
4 coe1sub.q N=-R
5 simpl1 RRingFBGBX0RRing
6 1 ply1ring RRingYRing
7 ringgrp YRingYGrp
8 6 7 syl RRingYGrp
9 2 3 grpsubcl YGrpFBGBF-˙GB
10 8 9 syl3an1 RRingFBGBF-˙GB
11 10 adantr RRingFBGBX0F-˙GB
12 simpl3 RRingFBGBX0GB
13 simpr RRingFBGBX0X0
14 eqid +Y=+Y
15 eqid +R=+R
16 1 2 14 15 coe1addfv RRingF-˙GBGBX0coe1F-˙G+YGX=coe1F-˙GX+Rcoe1GX
17 5 11 12 13 16 syl31anc RRingFBGBX0coe1F-˙G+YGX=coe1F-˙GX+Rcoe1GX
18 8 3ad2ant1 RRingFBGBYGrp
19 18 adantr RRingFBGBX0YGrp
20 simpl2 RRingFBGBX0FB
21 2 14 3 grpnpcan YGrpFBGBF-˙G+YG=F
22 19 20 12 21 syl3anc RRingFBGBX0F-˙G+YG=F
23 22 fveq2d RRingFBGBX0coe1F-˙G+YG=coe1F
24 23 fveq1d RRingFBGBX0coe1F-˙G+YGX=coe1FX
25 17 24 eqtr3d RRingFBGBX0coe1F-˙GX+Rcoe1GX=coe1FX
26 ringgrp RRingRGrp
27 26 3ad2ant1 RRingFBGBRGrp
28 27 adantr RRingFBGBX0RGrp
29 eqid coe1F=coe1F
30 eqid BaseR=BaseR
31 29 2 1 30 coe1f FBcoe1F:0BaseR
32 31 3ad2ant2 RRingFBGBcoe1F:0BaseR
33 32 ffvelcdmda RRingFBGBX0coe1FXBaseR
34 eqid coe1G=coe1G
35 34 2 1 30 coe1f GBcoe1G:0BaseR
36 35 3ad2ant3 RRingFBGBcoe1G:0BaseR
37 36 ffvelcdmda RRingFBGBX0coe1GXBaseR
38 eqid coe1F-˙G=coe1F-˙G
39 38 2 1 30 coe1f F-˙GBcoe1F-˙G:0BaseR
40 10 39 syl RRingFBGBcoe1F-˙G:0BaseR
41 40 ffvelcdmda RRingFBGBX0coe1F-˙GXBaseR
42 30 15 4 grpsubadd RGrpcoe1FXBaseRcoe1GXBaseRcoe1F-˙GXBaseRcoe1FXNcoe1GX=coe1F-˙GXcoe1F-˙GX+Rcoe1GX=coe1FX
43 28 33 37 41 42 syl13anc RRingFBGBX0coe1FXNcoe1GX=coe1F-˙GXcoe1F-˙GX+Rcoe1GX=coe1FX
44 25 43 mpbird RRingFBGBX0coe1FXNcoe1GX=coe1F-˙GX
45 44 eqcomd RRingFBGBX0coe1F-˙GX=coe1FXNcoe1GX