Description: The composition of two full functors is full. Proposition 3.30(d) in Adamek p. 35. (Contributed by Mario Carneiro, 28-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cofull.f | |
|
cofull.g | |
||
Assertion | cofull | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofull.f | |
|
2 | cofull.g | |
|
3 | relfunc | |
|
4 | fullfunc | |
|
5 | 4 1 | sselid | |
6 | fullfunc | |
|
7 | 6 2 | sselid | |
8 | 5 7 | cofucl | |
9 | 1st2nd | |
|
10 | 3 8 9 | sylancr | |
11 | 1st2ndbr | |
|
12 | 3 8 11 | sylancr | |
13 | eqid | |
|
14 | eqid | |
|
15 | eqid | |
|
16 | relfull | |
|
17 | 2 | adantr | |
18 | 1st2ndbr | |
|
19 | 16 17 18 | sylancr | |
20 | eqid | |
|
21 | relfunc | |
|
22 | 5 | adantr | |
23 | 1st2ndbr | |
|
24 | 21 22 23 | sylancr | |
25 | 20 13 24 | funcf1 | |
26 | simprl | |
|
27 | 25 26 | ffvelcdmd | |
28 | simprr | |
|
29 | 25 28 | ffvelcdmd | |
30 | 13 14 15 19 27 29 | fullfo | |
31 | eqid | |
|
32 | relfull | |
|
33 | 1 | adantr | |
34 | 1st2ndbr | |
|
35 | 32 33 34 | sylancr | |
36 | 20 15 31 35 26 28 | fullfo | |
37 | foco | |
|
38 | 30 36 37 | syl2anc | |
39 | 7 | adantr | |
40 | 20 22 39 26 28 | cofu2nd | |
41 | eqidd | |
|
42 | 20 22 39 26 | cofu1 | |
43 | 20 22 39 28 | cofu1 | |
44 | 42 43 | oveq12d | |
45 | 40 41 44 | foeq123d | |
46 | 38 45 | mpbird | |
47 | 46 | ralrimivva | |
48 | 20 14 31 | isfull2 | |
49 | 12 47 48 | sylanbrc | |
50 | df-br | |
|
51 | 49 50 | sylib | |
52 | 10 51 | eqeltrd | |