| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conncomp.2 |
|
| 2 |
|
topontop |
|
| 3 |
|
ssrab2 |
|
| 4 |
|
sspwuni |
|
| 5 |
3 4
|
mpbi |
|
| 6 |
1 5
|
eqsstri |
|
| 7 |
|
toponuni |
|
| 8 |
7
|
adantr |
|
| 9 |
6 8
|
sseqtrid |
|
| 10 |
|
eqid |
|
| 11 |
10
|
clsss3 |
|
| 12 |
2 9 11
|
syl2an2r |
|
| 13 |
12 8
|
sseqtrrd |
|
| 14 |
10
|
sscls |
|
| 15 |
2 9 14
|
syl2an2r |
|
| 16 |
1
|
conncompid |
|
| 17 |
15 16
|
sseldd |
|
| 18 |
|
simpl |
|
| 19 |
6
|
a1i |
|
| 20 |
1
|
conncompconn |
|
| 21 |
|
clsconn |
|
| 22 |
18 19 20 21
|
syl3anc |
|
| 23 |
1
|
conncompss |
|
| 24 |
13 17 22 23
|
syl3anc |
|
| 25 |
10
|
iscld4 |
|
| 26 |
2 9 25
|
syl2an2r |
|
| 27 |
24 26
|
mpbird |
|