Metamath Proof Explorer


Theorem conncompcld

Description: The connected component containing A is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypothesis conncomp.2 S=x𝒫X|AxJ𝑡xConn
Assertion conncompcld JTopOnXAXSClsdJ

Proof

Step Hyp Ref Expression
1 conncomp.2 S=x𝒫X|AxJ𝑡xConn
2 topontop JTopOnXJTop
3 ssrab2 x𝒫X|AxJ𝑡xConn𝒫X
4 sspwuni x𝒫X|AxJ𝑡xConn𝒫Xx𝒫X|AxJ𝑡xConnX
5 3 4 mpbi x𝒫X|AxJ𝑡xConnX
6 1 5 eqsstri SX
7 toponuni JTopOnXX=J
8 7 adantr JTopOnXAXX=J
9 6 8 sseqtrid JTopOnXAXSJ
10 eqid J=J
11 10 clsss3 JTopSJclsJSJ
12 2 9 11 syl2an2r JTopOnXAXclsJSJ
13 12 8 sseqtrrd JTopOnXAXclsJSX
14 10 sscls JTopSJSclsJS
15 2 9 14 syl2an2r JTopOnXAXSclsJS
16 1 conncompid JTopOnXAXAS
17 15 16 sseldd JTopOnXAXAclsJS
18 simpl JTopOnXAXJTopOnX
19 6 a1i JTopOnXAXSX
20 1 conncompconn JTopOnXAXJ𝑡SConn
21 clsconn JTopOnXSXJ𝑡SConnJ𝑡clsJSConn
22 18 19 20 21 syl3anc JTopOnXAXJ𝑡clsJSConn
23 1 conncompss clsJSXAclsJSJ𝑡clsJSConnclsJSS
24 13 17 22 23 syl3anc JTopOnXAXclsJSS
25 10 iscld4 JTopSJSClsdJclsJSS
26 2 9 25 syl2an2r JTopOnXAXSClsdJclsJSS
27 24 26 mpbird JTopOnXAXSClsdJ