Description: The connected component containing A is a closed set. (Contributed by Mario Carneiro, 19-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | conncomp.2 | |
|
Assertion | conncompcld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | conncomp.2 | |
|
2 | topontop | |
|
3 | ssrab2 | |
|
4 | sspwuni | |
|
5 | 3 4 | mpbi | |
6 | 1 5 | eqsstri | |
7 | toponuni | |
|
8 | 7 | adantr | |
9 | 6 8 | sseqtrid | |
10 | eqid | |
|
11 | 10 | clsss3 | |
12 | 2 9 11 | syl2an2r | |
13 | 12 8 | sseqtrrd | |
14 | 10 | sscls | |
15 | 2 9 14 | syl2an2r | |
16 | 1 | conncompid | |
17 | 15 16 | sseldd | |
18 | simpl | |
|
19 | 6 | a1i | |
20 | 1 | conncompconn | |
21 | clsconn | |
|
22 | 18 19 20 21 | syl3anc | |
23 | 1 | conncompss | |
24 | 13 17 22 23 | syl3anc | |
25 | 10 | iscld4 | |
26 | 2 9 25 | syl2an2r | |
27 | 24 26 | mpbird | |