Description: A structure with a constant group addition operation and at least two elements is not a monoid. (Contributed by AV, 16-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | copisnmnd.b | |
|
copisnmnd.p | |
||
copisnmnd.c | |
||
copisnmnd.n | |
||
Assertion | copisnmnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | copisnmnd.b | |
|
2 | copisnmnd.p | |
|
3 | copisnmnd.c | |
|
4 | copisnmnd.n | |
|
5 | 1 | fvexi | |
6 | 5 | a1i | |
7 | simpr | |
|
8 | simpl | |
|
9 | hashgt12el2 | |
|
10 | 6 7 8 9 | syl3anc | |
11 | df-ne | |
|
12 | 11 | rexbii | |
13 | rexnal | |
|
14 | 12 13 | bitri | |
15 | eqidd | |
|
16 | eqidd | |
|
17 | simpr | |
|
18 | 17 | adantr | |
19 | simpr | |
|
20 | 3 | adantr | |
21 | 20 | adantr | |
22 | 15 16 18 19 21 | ovmpod | |
23 | 22 | adantr | |
24 | simpr | |
|
25 | 23 24 | eqtr3d | |
26 | 25 | ex | |
27 | 26 | ralimdva | |
28 | 27 | rexlimdva | |
29 | 28 | con3d | |
30 | rexnal | |
|
31 | 30 | bicomi | |
32 | 31 | ralbii | |
33 | ralnex | |
|
34 | df-ne | |
|
35 | 34 | bicomi | |
36 | 35 | rexbii | |
37 | 36 | ralbii | |
38 | 32 33 37 | 3bitr3i | |
39 | 29 38 | imbitrdi | |
40 | 14 39 | biimtrid | |
41 | 10 40 | syl5 | |
42 | 3 4 41 | mp2and | |
43 | 2 | eqcomi | |
44 | 1 43 | isnmnd | |
45 | 42 44 | syl | |