Metamath Proof Explorer


Theorem copisnmnd

Description: A structure with a constant group addition operation and at least two elements is not a monoid. (Contributed by AV, 16-Feb-2020)

Ref Expression
Hypotheses copisnmnd.b B=BaseM
copisnmnd.p +M=xB,yBC
copisnmnd.c φCB
copisnmnd.n φ1<B
Assertion copisnmnd φMMnd

Proof

Step Hyp Ref Expression
1 copisnmnd.b B=BaseM
2 copisnmnd.p +M=xB,yBC
3 copisnmnd.c φCB
4 copisnmnd.n φ1<B
5 1 fvexi BV
6 5 a1i CB1<BBV
7 simpr CB1<B1<B
8 simpl CB1<BCB
9 hashgt12el2 BV1<BCBcBCc
10 6 7 8 9 syl3anc CB1<BcBCc
11 df-ne Cc¬C=c
12 11 rexbii cBCccB¬C=c
13 rexnal cB¬C=c¬cBC=c
14 12 13 bitri cBCc¬cBC=c
15 eqidd φaBcBxB,yBC=xB,yBC
16 eqidd φaBcBx=ay=cC=C
17 simpr φaBaB
18 17 adantr φaBcBaB
19 simpr φaBcBcB
20 3 adantr φaBCB
21 20 adantr φaBcBCB
22 15 16 18 19 21 ovmpod φaBcBaxB,yBCc=C
23 22 adantr φaBcBaxB,yBCc=caxB,yBCc=C
24 simpr φaBcBaxB,yBCc=caxB,yBCc=c
25 23 24 eqtr3d φaBcBaxB,yBCc=cC=c
26 25 ex φaBcBaxB,yBCc=cC=c
27 26 ralimdva φaBcBaxB,yBCc=ccBC=c
28 27 rexlimdva φaBcBaxB,yBCc=ccBC=c
29 28 con3d φ¬cBC=c¬aBcBaxB,yBCc=c
30 rexnal cB¬axB,yBCc=c¬cBaxB,yBCc=c
31 30 bicomi ¬cBaxB,yBCc=ccB¬axB,yBCc=c
32 31 ralbii aB¬cBaxB,yBCc=caBcB¬axB,yBCc=c
33 ralnex aB¬cBaxB,yBCc=c¬aBcBaxB,yBCc=c
34 df-ne axB,yBCcc¬axB,yBCc=c
35 34 bicomi ¬axB,yBCc=caxB,yBCcc
36 35 rexbii cB¬axB,yBCc=ccBaxB,yBCcc
37 36 ralbii aBcB¬axB,yBCc=caBcBaxB,yBCcc
38 32 33 37 3bitr3i ¬aBcBaxB,yBCc=caBcBaxB,yBCcc
39 29 38 imbitrdi φ¬cBC=caBcBaxB,yBCcc
40 14 39 biimtrid φcBCcaBcBaxB,yBCcc
41 10 40 syl5 φCB1<BaBcBaxB,yBCcc
42 3 4 41 mp2and φaBcBaxB,yBCcc
43 2 eqcomi xB,yBC=+M
44 1 43 isnmnd aBcBaxB,yBCccMMnd
45 42 44 syl φMMnd