| Step |
Hyp |
Ref |
Expression |
| 1 |
|
copisnmnd.b |
|
| 2 |
|
copisnmnd.p |
|
| 3 |
|
copisnmnd.c |
|
| 4 |
|
copisnmnd.n |
|
| 5 |
1
|
fvexi |
|
| 6 |
5
|
a1i |
|
| 7 |
|
simpr |
|
| 8 |
|
simpl |
|
| 9 |
|
hashgt12el2 |
|
| 10 |
6 7 8 9
|
syl3anc |
|
| 11 |
|
df-ne |
|
| 12 |
11
|
rexbii |
|
| 13 |
|
rexnal |
|
| 14 |
12 13
|
bitri |
|
| 15 |
|
eqidd |
|
| 16 |
|
eqidd |
|
| 17 |
|
simpr |
|
| 18 |
17
|
adantr |
|
| 19 |
|
simpr |
|
| 20 |
3
|
adantr |
|
| 21 |
20
|
adantr |
|
| 22 |
15 16 18 19 21
|
ovmpod |
|
| 23 |
22
|
adantr |
|
| 24 |
|
simpr |
|
| 25 |
23 24
|
eqtr3d |
|
| 26 |
25
|
ex |
|
| 27 |
26
|
ralimdva |
|
| 28 |
27
|
rexlimdva |
|
| 29 |
28
|
con3d |
|
| 30 |
|
rexnal |
|
| 31 |
30
|
bicomi |
|
| 32 |
31
|
ralbii |
|
| 33 |
|
ralnex |
|
| 34 |
|
df-ne |
|
| 35 |
34
|
bicomi |
|
| 36 |
35
|
rexbii |
|
| 37 |
36
|
ralbii |
|
| 38 |
32 33 37
|
3bitr3i |
|
| 39 |
29 38
|
imbitrdi |
|
| 40 |
14 39
|
biimtrid |
|
| 41 |
10 40
|
syl5 |
|
| 42 |
3 4 41
|
mp2and |
|
| 43 |
2
|
eqcomi |
|
| 44 |
1 43
|
isnmnd |
|
| 45 |
42 44
|
syl |
|