Metamath Proof Explorer


Theorem coseq1

Description: A complex number whose cosine is one is an integer multiple of 2 _pi . (Contributed by Mario Carneiro, 12-May-2014)

Ref Expression
Assertion coseq1 A cos A = 1 A 2 π

Proof

Step Hyp Ref Expression
1 2cn 2
2 2ne0 2 0
3 divcan2 A 2 2 0 2 A 2 = A
4 1 2 3 mp3an23 A 2 A 2 = A
5 4 fveq2d A cos 2 A 2 = cos A
6 halfcl A A 2
7 cos2tsin A 2 cos 2 A 2 = 1 2 sin A 2 2
8 6 7 syl A cos 2 A 2 = 1 2 sin A 2 2
9 5 8 eqtr3d A cos A = 1 2 sin A 2 2
10 9 eqeq1d A cos A = 1 1 2 sin A 2 2 = 1
11 6 sincld A sin A 2
12 11 sqcld A sin A 2 2
13 mulcl 2 sin A 2 2 2 sin A 2 2
14 1 12 13 sylancr A 2 sin A 2 2
15 ax-1cn 1
16 subsub23 1 2 sin A 2 2 1 1 2 sin A 2 2 = 1 1 1 = 2 sin A 2 2
17 15 15 16 mp3an13 2 sin A 2 2 1 2 sin A 2 2 = 1 1 1 = 2 sin A 2 2
18 14 17 syl A 1 2 sin A 2 2 = 1 1 1 = 2 sin A 2 2
19 eqcom 1 1 = 2 sin A 2 2 2 sin A 2 2 = 1 1
20 1m1e0 1 1 = 0
21 20 eqeq2i 2 sin A 2 2 = 1 1 2 sin A 2 2 = 0
22 19 21 bitri 1 1 = 2 sin A 2 2 2 sin A 2 2 = 0
23 18 22 bitrdi A 1 2 sin A 2 2 = 1 2 sin A 2 2 = 0
24 10 23 bitrd A cos A = 1 2 sin A 2 2 = 0
25 mul0or 2 sin A 2 2 2 sin A 2 2 = 0 2 = 0 sin A 2 2 = 0
26 1 12 25 sylancr A 2 sin A 2 2 = 0 2 = 0 sin A 2 2 = 0
27 2 neii ¬ 2 = 0
28 biorf ¬ 2 = 0 sin A 2 2 = 0 2 = 0 sin A 2 2 = 0
29 27 28 ax-mp sin A 2 2 = 0 2 = 0 sin A 2 2 = 0
30 26 29 bitr4di A 2 sin A 2 2 = 0 sin A 2 2 = 0
31 sqeq0 sin A 2 sin A 2 2 = 0 sin A 2 = 0
32 11 31 syl A sin A 2 2 = 0 sin A 2 = 0
33 24 30 32 3bitrd A cos A = 1 sin A 2 = 0
34 sineq0 A 2 sin A 2 = 0 A 2 π
35 6 34 syl A sin A 2 = 0 A 2 π
36 1 2 pm3.2i 2 2 0
37 picn π
38 pire π
39 pipos 0 < π
40 38 39 gt0ne0ii π 0
41 37 40 pm3.2i π π 0
42 divdiv1 A 2 2 0 π π 0 A 2 π = A 2 π
43 36 41 42 mp3an23 A A 2 π = A 2 π
44 43 eleq1d A A 2 π A 2 π
45 33 35 44 3bitrd A cos A = 1 A 2 π