Metamath Proof Explorer


Theorem coseq1

Description: A complex number whose cosine is one is an integer multiple of 2 _pi . (Contributed by Mario Carneiro, 12-May-2014)

Ref Expression
Assertion coseq1 AcosA=1A2π

Proof

Step Hyp Ref Expression
1 2cn 2
2 2ne0 20
3 divcan2 A2202A2=A
4 1 2 3 mp3an23 A2A2=A
5 4 fveq2d Acos2A2=cosA
6 halfcl AA2
7 cos2tsin A2cos2A2=12sinA22
8 6 7 syl Acos2A2=12sinA22
9 5 8 eqtr3d AcosA=12sinA22
10 9 eqeq1d AcosA=112sinA22=1
11 6 sincld AsinA2
12 11 sqcld AsinA22
13 mulcl 2sinA222sinA22
14 1 12 13 sylancr A2sinA22
15 ax-1cn 1
16 subsub23 12sinA22112sinA22=111=2sinA22
17 15 15 16 mp3an13 2sinA2212sinA22=111=2sinA22
18 14 17 syl A12sinA22=111=2sinA22
19 eqcom 11=2sinA222sinA22=11
20 1m1e0 11=0
21 20 eqeq2i 2sinA22=112sinA22=0
22 19 21 bitri 11=2sinA222sinA22=0
23 18 22 bitrdi A12sinA22=12sinA22=0
24 10 23 bitrd AcosA=12sinA22=0
25 mul0or 2sinA222sinA22=02=0sinA22=0
26 1 12 25 sylancr A2sinA22=02=0sinA22=0
27 2 neii ¬2=0
28 biorf ¬2=0sinA22=02=0sinA22=0
29 27 28 ax-mp sinA22=02=0sinA22=0
30 26 29 bitr4di A2sinA22=0sinA22=0
31 sqeq0 sinA2sinA22=0sinA2=0
32 11 31 syl AsinA22=0sinA2=0
33 24 30 32 3bitrd AcosA=1sinA2=0
34 sineq0 A2sinA2=0A2π
35 6 34 syl AsinA2=0A2π
36 1 2 pm3.2i 220
37 picn π
38 pire π
39 pipos 0<π
40 38 39 gt0ne0ii π0
41 37 40 pm3.2i ππ0
42 divdiv1 A220ππ0A2π=A2π
43 36 41 42 mp3an23 AA2π=A2π
44 43 eleq1d AA2πA2π
45 33 35 44 3bitrd AcosA=1A2π