| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmatsrngpmat.s |  | 
						
							| 2 |  | cpmatsrngpmat.p |  | 
						
							| 3 |  | cpmatsrngpmat.c |  | 
						
							| 4 | 1 2 3 | cpmatmcllem |  | 
						
							| 5 | 2 | ply1ring |  | 
						
							| 6 | 5 | ad4antlr |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 1 2 3 7 | cpmatpmat |  | 
						
							| 9 | 8 | 3expa |  | 
						
							| 10 | 1 2 3 7 | cpmatpmat |  | 
						
							| 11 | 10 | 3expa |  | 
						
							| 12 | 9 11 | anim12dan |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 | 15 | anim1i |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 3 7 17 | matmulcell |  | 
						
							| 19 | 6 14 16 18 | syl3anc |  | 
						
							| 20 | 19 | fveq2d |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 | 21 | fveq1d |  | 
						
							| 23 | 22 | eqeq1d |  | 
						
							| 24 | 23 | ralbidva |  | 
						
							| 25 | 24 | ralbidva |  | 
						
							| 26 | 25 | ralbidva |  | 
						
							| 27 | 4 26 | mpbird |  | 
						
							| 28 |  | simpl |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 2 3 | pmatring |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 |  | simpl |  | 
						
							| 35 | 34 | anim2i |  | 
						
							| 36 |  | df-3an |  | 
						
							| 37 | 35 36 | sylibr |  | 
						
							| 38 | 37 8 | syl |  | 
						
							| 39 |  | simpr |  | 
						
							| 40 | 39 | anim2i |  | 
						
							| 41 |  | df-3an |  | 
						
							| 42 | 40 41 | sylibr |  | 
						
							| 43 | 42 10 | syl |  | 
						
							| 44 | 7 17 | ringcl |  | 
						
							| 45 | 33 38 43 44 | syl3anc |  | 
						
							| 46 | 1 2 3 7 | cpmatel |  | 
						
							| 47 | 29 31 45 46 | syl3anc |  | 
						
							| 48 | 27 47 | mpbird |  | 
						
							| 49 | 48 | ralrimivva |  |