Metamath Proof Explorer


Theorem cpmidg2sum

Description: Equality of two sums representing the identity matrix multiplied with the characteristic polynomial of a matrix. (Contributed by AV, 11-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a A=NMatR
cpmadugsum.b B=BaseA
cpmadugsum.p P=Poly1R
cpmadugsum.y Y=NMatP
cpmadugsum.t T=NmatToPolyMatR
cpmadugsum.x X=var1R
cpmadugsum.e ×˙=mulGrpP
cpmadugsum.m ·˙=Y
cpmadugsum.r ×˙=Y
cpmadugsum.1 1˙=1Y
cpmadugsum.g +˙=+Y
cpmadugsum.s -˙=-Y
cpmadugsum.i I=X·˙1˙-˙TM
cpmadugsum.j J=NmaAdjuP
cpmadugsum.0 0˙=0Y
cpmadugsum.g2 G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
cpmidgsum2.c C=NCharPlyMatR
cpmidgsum2.k K=CM
cpmidg2sum.u U=algScP
Assertion cpmidg2sum NFinRCRingMBsbB0sYi0i×˙X·˙Ucoe1Ki·˙1˙=Yi0i×˙X·˙Gi

Proof

Step Hyp Ref Expression
1 cpmadugsum.a A=NMatR
2 cpmadugsum.b B=BaseA
3 cpmadugsum.p P=Poly1R
4 cpmadugsum.y Y=NMatP
5 cpmadugsum.t T=NmatToPolyMatR
6 cpmadugsum.x X=var1R
7 cpmadugsum.e ×˙=mulGrpP
8 cpmadugsum.m ·˙=Y
9 cpmadugsum.r ×˙=Y
10 cpmadugsum.1 1˙=1Y
11 cpmadugsum.g +˙=+Y
12 cpmadugsum.s -˙=-Y
13 cpmadugsum.i I=X·˙1˙-˙TM
14 cpmadugsum.j J=NmaAdjuP
15 cpmadugsum.0 0˙=0Y
16 cpmadugsum.g2 G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
17 cpmidgsum2.c C=NCharPlyMatR
18 cpmidgsum2.k K=CM
19 cpmidg2sum.u U=algScP
20 eqid K·˙1˙=K·˙1˙
21 1 2 3 4 6 7 8 10 19 17 18 20 cpmidgsum NFinRCRingMBK·˙1˙=Yi0i×˙X·˙Ucoe1Ki·˙1˙
22 21 eqcomd NFinRCRingMBYi0i×˙X·˙Ucoe1Ki·˙1˙=K·˙1˙
23 22 ad3antrrr NFinRCRingMBsbB0sK·˙1˙=Yi0i×˙X·˙GiYi0i×˙X·˙Ucoe1Ki·˙1˙=K·˙1˙
24 simpr NFinRCRingMBsbB0sK·˙1˙=Yi0i×˙X·˙GiK·˙1˙=Yi0i×˙X·˙Gi
25 23 24 eqtrd NFinRCRingMBsbB0sK·˙1˙=Yi0i×˙X·˙GiYi0i×˙X·˙Ucoe1Ki·˙1˙=Yi0i×˙X·˙Gi
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 cpmidgsum2 NFinRCRingMBsbB0sK·˙1˙=Yi0i×˙X·˙Gi
27 25 26 reximddv2 NFinRCRingMBsbB0sYi0i×˙X·˙Ucoe1Ki·˙1˙=Yi0i×˙X·˙Gi