Step |
Hyp |
Ref |
Expression |
1 |
|
elfzoelz |
|
2 |
1
|
3ad2ant3 |
|
3 |
|
simp2 |
|
4 |
2 3
|
zsubcld |
|
5 |
|
elfzo0 |
|
6 |
5
|
simp2bi |
|
7 |
6
|
3ad2ant3 |
|
8 |
|
zmodfzo |
|
9 |
4 7 8
|
syl2anc |
|
10 |
9
|
3expa |
|
11 |
|
elfzoelz |
|
12 |
11
|
adantl |
|
13 |
|
simplr |
|
14 |
12 13
|
zaddcld |
|
15 |
|
elfzo0 |
|
16 |
15
|
simp2bi |
|
17 |
16
|
adantl |
|
18 |
|
zmodfzo |
|
19 |
14 17 18
|
syl2anc |
|
20 |
|
simpr |
|
21 |
20
|
oveq1d |
|
22 |
21
|
oveq1d |
|
23 |
22
|
eqeq2d |
|
24 |
12
|
zred |
|
25 |
13
|
zred |
|
26 |
24 25
|
readdcld |
|
27 |
17
|
nnrpd |
|
28 |
|
modsubmod |
|
29 |
26 25 27 28
|
syl3anc |
|
30 |
12
|
zcnd |
|
31 |
13
|
zcnd |
|
32 |
30 31
|
pncand |
|
33 |
32
|
oveq1d |
|
34 |
|
zmodidfzoimp |
|
35 |
34
|
adantl |
|
36 |
29 33 35
|
3eqtrrd |
|
37 |
19 23 36
|
rspcedvd |
|
38 |
|
simp3 |
|
39 |
38
|
fveq2d |
|
40 |
|
simp1l |
|
41 |
|
simp1r |
|
42 |
|
simp2 |
|
43 |
|
cshwidxmodr |
|
44 |
40 41 42 43
|
syl3anc |
|
45 |
39 44
|
eqtrd |
|
46 |
45
|
eqeq2d |
|
47 |
10 37 46
|
rexxfrd2 |
|
48 |
47
|
abbidv |
|
49 |
|
cshwfn |
|
50 |
|
fnrnfv |
|
51 |
49 50
|
syl |
|
52 |
|
wrdfn |
|
53 |
52
|
adantr |
|
54 |
|
fnrnfv |
|
55 |
53 54
|
syl |
|
56 |
48 51 55
|
3eqtr4d |
|