Metamath Proof Explorer


Theorem cshwidxmodr

Description: The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 17-Mar-2021)

Ref Expression
Assertion cshwidxmodr WWordVNI0..^WWcyclShiftNINmodW=WI

Proof

Step Hyp Ref Expression
1 elfzo0 I0..^WI0WI<W
2 nn0z I0I
3 2 3ad2ant1 I0WI<WI
4 zsubcl ININ
5 3 4 sylan I0WI<WNIN
6 simpl2 I0WI<WNW
7 5 6 jca I0WI<WNINW
8 7 ex I0WI<WNINW
9 1 8 sylbi I0..^WNINW
10 9 impcom NI0..^WINW
11 10 3adant1 WWordVNI0..^WINW
12 zmodfzo INWINmodW0..^W
13 11 12 syl WWordVNI0..^WINmodW0..^W
14 cshwidxmod WWordVNINmodW0..^WWcyclShiftNINmodW=WINmodW+NmodW
15 13 14 syld3an3 WWordVNI0..^WWcyclShiftNINmodW=WINmodW+NmodW
16 elfzoelz I0..^WI
17 16 adantl I0WI0..^WI
18 17 4 sylan I0WI0..^WNIN
19 18 zred I0WI0..^WNIN
20 zre NN
21 20 adantl I0WI0..^WNN
22 nnrp WW+
23 22 ad3antlr I0WI0..^WNW+
24 modaddmod INNW+INmodW+NmodW=I-N+NmodW
25 19 21 23 24 syl3anc I0WI0..^WNINmodW+NmodW=I-N+NmodW
26 nn0cn I0I
27 26 ad2antrr I0WI0..^WI
28 zcn NN
29 npcan INI-N+N=I
30 27 28 29 syl2an I0WI0..^WNI-N+N=I
31 30 oveq1d I0WI0..^WNI-N+NmodW=ImodW
32 zmodidfzoimp I0..^WImodW=I
33 32 ad2antlr I0WI0..^WNImodW=I
34 25 31 33 3eqtrd I0WI0..^WNINmodW+NmodW=I
35 34 fveq2d I0WI0..^WNWINmodW+NmodW=WI
36 35 ex I0WI0..^WNWINmodW+NmodW=WI
37 36 ex I0WI0..^WNWINmodW+NmodW=WI
38 37 3adant3 I0WI<WI0..^WNWINmodW+NmodW=WI
39 1 38 sylbi I0..^WI0..^WNWINmodW+NmodW=WI
40 39 pm2.43i I0..^WNWINmodW+NmodW=WI
41 40 impcom NI0..^WWINmodW+NmodW=WI
42 41 3adant1 WWordVNI0..^WWINmodW+NmodW=WI
43 15 42 eqtrd WWordVNI0..^WWcyclShiftNINmodW=WI