Metamath Proof Explorer


Theorem cusgredg

Description: In a complete simple graph, the edges are all the pairs of different vertices. (Contributed by Alexander van der Vekens, 12-Jan-2018) (Revised by AV, 1-Nov-2020)

Ref Expression
Hypotheses iscusgrvtx.v V=VtxG
iscusgredg.v E=EdgG
Assertion cusgredg GComplUSGraphE=x𝒫V|x=2

Proof

Step Hyp Ref Expression
1 iscusgrvtx.v V=VtxG
2 iscusgredg.v E=EdgG
3 1 2 iscusgredg GComplUSGraphGUSGraphvVnVvnvE
4 usgredgss GUSGraphEdgGx𝒫VtxG|x=2
5 1 pweqi 𝒫V=𝒫VtxG
6 5 rabeqi x𝒫V|x=2=x𝒫VtxG|x=2
7 4 2 6 3sstr4g GUSGraphEx𝒫V|x=2
8 7 adantr GUSGraphvVnVvnvEEx𝒫V|x=2
9 elss2prb px𝒫V|x=2yVzVyzp=yz
10 sneq v=yv=y
11 10 difeq2d v=yVv=Vy
12 preq2 v=ynv=ny
13 12 eleq1d v=ynvEnyE
14 11 13 raleqbidv v=ynVvnvEnVynyE
15 14 rspcv yVvVnVvnvEnVynyE
16 15 adantr yVzVvVnVvnvEnVynyE
17 16 adantr yVzVyzp=yzvVnVvnvEnVynyE
18 simpr yVzVzV
19 necom yzzy
20 19 biimpi yzzy
21 20 adantr yzp=yzzy
22 18 21 anim12i yVzVyzp=yzzVzy
23 eldifsn zVyzVzy
24 22 23 sylibr yVzVyzp=yzzVy
25 preq1 n=zny=zy
26 25 eleq1d n=znyEzyE
27 26 rspcv zVynVynyEzyE
28 24 27 syl yVzVyzp=yznVynyEzyE
29 id p=yzp=yz
30 prcom yz=zy
31 29 30 eqtr2di p=yzzy=p
32 31 eleq1d p=yzzyEpE
33 32 biimpd p=yzzyEpE
34 33 a1d p=yzGUSGraphzyEpE
35 34 ad2antll yVzVyzp=yzGUSGraphzyEpE
36 35 com23 yVzVyzp=yzzyEGUSGraphpE
37 17 28 36 3syld yVzVyzp=yzvVnVvnvEGUSGraphpE
38 37 ex yVzVyzp=yzvVnVvnvEGUSGraphpE
39 38 rexlimivv yVzVyzp=yzvVnVvnvEGUSGraphpE
40 39 com13 GUSGraphvVnVvnvEyVzVyzp=yzpE
41 40 imp GUSGraphvVnVvnvEyVzVyzp=yzpE
42 9 41 biimtrid GUSGraphvVnVvnvEpx𝒫V|x=2pE
43 42 ssrdv GUSGraphvVnVvnvEx𝒫V|x=2E
44 8 43 eqssd GUSGraphvVnVvnvEE=x𝒫V|x=2
45 3 44 sylbi GComplUSGraphE=x𝒫V|x=2