Metamath Proof Explorer


Theorem cusgrexi

Description: An arbitrary set V regarded as set of vertices together with the set of pairs of elements of this set regarded as edges is a complete simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018) (Revised by AV, 5-Nov-2020) (Proof shortened by AV, 14-Feb-2022)

Ref Expression
Hypothesis usgrexi.p P=x𝒫V|x=2
Assertion cusgrexi VWVIPComplUSGraph

Proof

Step Hyp Ref Expression
1 usgrexi.p P=x𝒫V|x=2
2 1 usgrexi VWVIPUSGraph
3 1 cusgrexilem1 VWIPV
4 opvtxfv VWIPVVtxVIP=V
5 4 eqcomd VWIPVV=VtxVIP
6 3 5 mpdan VWV=VtxVIP
7 6 eleq2d VWvVvVtxVIP
8 7 biimpa VWvVvVtxVIP
9 eldifi nVvnV
10 9 adantl VWvVnVvnV
11 3 4 mpdan VWVtxVIP=V
12 11 eleq2d VWnVtxVIPnV
13 12 ad2antrr VWvVnVvnVtxVIPnV
14 10 13 mpbird VWvVnVvnVtxVIP
15 simplr VWvVnVvvV
16 11 eleq2d VWvVtxVIPvV
17 16 ad2antrr VWvVnVvvVtxVIPvV
18 15 17 mpbird VWvVnVvvVtxVIP
19 14 18 jca VWvVnVvnVtxVIPvVtxVIP
20 eldifsni nVvnv
21 20 adantl VWvVnVvnv
22 1 cusgrexilem2 VWvVnVveranIPvne
23 edgval EdgVIP=raniEdgVIP
24 opiedgfv VWIPViEdgVIP=IP
25 3 24 mpdan VWiEdgVIP=IP
26 25 rneqd VWraniEdgVIP=ranIP
27 23 26 eqtrid VWEdgVIP=ranIP
28 27 rexeqdv VWeEdgVIPvneeranIPvne
29 28 ad2antrr VWvVnVveEdgVIPvneeranIPvne
30 22 29 mpbird VWvVnVveEdgVIPvne
31 eqid VtxVIP=VtxVIP
32 eqid EdgVIP=EdgVIP
33 31 32 nbgrel nVIPNeighbVtxvnVtxVIPvVtxVIPnveEdgVIPvne
34 19 21 30 33 syl3anbrc VWvVnVvnVIPNeighbVtxv
35 34 ralrimiva VWvVnVvnVIPNeighbVtxv
36 11 adantr VWvVVtxVIP=V
37 36 difeq1d VWvVVtxVIPv=Vv
38 37 raleqdv VWvVnVtxVIPvnVIPNeighbVtxvnVvnVIPNeighbVtxv
39 35 38 mpbird VWvVnVtxVIPvnVIPNeighbVtxv
40 31 uvtxel vUnivVtxVIPvVtxVIPnVtxVIPvnVIPNeighbVtxv
41 8 39 40 sylanbrc VWvVvUnivVtxVIP
42 41 ralrimiva VWvVvUnivVtxVIP
43 11 raleqdv VWvVtxVIPvUnivVtxVIPvVvUnivVtxVIP
44 42 43 mpbird VWvVtxVIPvUnivVtxVIP
45 opex VIPV
46 31 iscplgr VIPVVIPComplGraphvVtxVIPvUnivVtxVIP
47 45 46 mp1i VWVIPComplGraphvVtxVIPvUnivVtxVIP
48 44 47 mpbird VWVIPComplGraph
49 iscusgr VIPComplUSGraphVIPUSGraphVIPComplGraph
50 2 48 49 sylanbrc VWVIPComplUSGraph