Description: An arbitrary set V regarded as set of vertices together with the set of pairs of elements of this set regarded as edges is a complete simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018) (Revised by AV, 5-Nov-2020) (Proof shortened by AV, 14-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | usgrexi.p | |
|
Assertion | cusgrexi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrexi.p | |
|
2 | 1 | usgrexi | |
3 | 1 | cusgrexilem1 | |
4 | opvtxfv | |
|
5 | 4 | eqcomd | |
6 | 3 5 | mpdan | |
7 | 6 | eleq2d | |
8 | 7 | biimpa | |
9 | eldifi | |
|
10 | 9 | adantl | |
11 | 3 4 | mpdan | |
12 | 11 | eleq2d | |
13 | 12 | ad2antrr | |
14 | 10 13 | mpbird | |
15 | simplr | |
|
16 | 11 | eleq2d | |
17 | 16 | ad2antrr | |
18 | 15 17 | mpbird | |
19 | 14 18 | jca | |
20 | eldifsni | |
|
21 | 20 | adantl | |
22 | 1 | cusgrexilem2 | |
23 | edgval | |
|
24 | opiedgfv | |
|
25 | 3 24 | mpdan | |
26 | 25 | rneqd | |
27 | 23 26 | eqtrid | |
28 | 27 | rexeqdv | |
29 | 28 | ad2antrr | |
30 | 22 29 | mpbird | |
31 | eqid | |
|
32 | eqid | |
|
33 | 31 32 | nbgrel | |
34 | 19 21 30 33 | syl3anbrc | |
35 | 34 | ralrimiva | |
36 | 11 | adantr | |
37 | 36 | difeq1d | |
38 | 37 | raleqdv | |
39 | 35 38 | mpbird | |
40 | 31 | uvtxel | |
41 | 8 39 40 | sylanbrc | |
42 | 41 | ralrimiva | |
43 | 11 | raleqdv | |
44 | 42 43 | mpbird | |
45 | opex | |
|
46 | 31 | iscplgr | |
47 | 45 46 | mp1i | |
48 | 44 47 | mpbird | |
49 | iscusgr | |
|
50 | 2 48 49 | sylanbrc | |