Description: Induction step in cusgrsize . If the size of the complete graph with n vertices reduced by one vertex is " ( n - 1 ) choose 2", the size of the complete graph with n vertices is " n choose 2". (Contributed by Alexander van der Vekens, 11-Jan-2018) (Revised by AV, 9-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cusgrsizeindb0.v | |
|
cusgrsizeindb0.e | |
||
cusgrsizeinds.f | |
||
Assertion | cusgrsize2inds | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrsizeindb0.v | |
|
2 | cusgrsizeindb0.e | |
|
3 | cusgrsizeinds.f | |
|
4 | 1 | fvexi | |
5 | hashnn0n0nn | |
|
6 | 5 | anassrs | |
7 | simplll | |
|
8 | simplr | |
|
9 | eleq1 | |
|
10 | 9 | eqcoms | |
11 | nnm1nn0 | |
|
12 | 10 11 | syl6bi | |
13 | 12 | ad2antlr | |
14 | 13 | imp | |
15 | nncn | |
|
16 | 1cnd | |
|
17 | 15 16 | npcand | |
18 | 17 | eqcomd | |
19 | 10 18 | syl6bi | |
20 | 19 | ad2antlr | |
21 | 20 | imp | |
22 | hashdifsnp1 | |
|
23 | 22 | imp | |
24 | 7 8 14 21 23 | syl31anc | |
25 | oveq1 | |
|
26 | 25 | eqeq2d | |
27 | 10 | ad2antlr | |
28 | nnnn0 | |
|
29 | hashclb | |
|
30 | 28 29 | syl5ibrcom | |
31 | 1 2 3 | cusgrsizeinds | |
32 | oveq2 | |
|
33 | 32 | eqeq2d | |
34 | 33 | adantl | |
35 | bcn2m1 | |
|
36 | 35 | eqeq2d | |
37 | 36 | biimpd | |
38 | 37 | adantr | |
39 | 34 38 | sylbid | |
40 | 39 | ex | |
41 | 40 | com3r | |
42 | 31 41 | syl | |
43 | 42 | 3exp | |
44 | 43 | com14 | |
45 | 30 44 | syldc | |
46 | 45 | com23 | |
47 | 46 | adantr | |
48 | 47 | imp | |
49 | 27 48 | sylbid | |
50 | 49 | imp | |
51 | 50 | com13 | |
52 | 26 51 | syl6bi | |
53 | 52 | com24 | |
54 | 24 53 | mpcom | |
55 | 54 | ex | |
56 | 55 | adantllr | |
57 | 6 56 | mpd | |
58 | 57 | exp41 | |
59 | 58 | com25 | |
60 | 4 59 | ax-mp | |
61 | 60 | 3imp | |
62 | 61 | com12 | |