Metamath Proof Explorer


Theorem cusgrsize2inds

Description: Induction step in cusgrsize . If the size of the complete graph with n vertices reduced by one vertex is " ( n - 1 ) choose 2", the size of the complete graph with n vertices is " n choose 2". (Contributed by Alexander van der Vekens, 11-Jan-2018) (Revised by AV, 9-Nov-2020)

Ref Expression
Hypotheses cusgrsizeindb0.v V=VtxG
cusgrsizeindb0.e E=EdgG
cusgrsizeinds.f F=eE|Ne
Assertion cusgrsize2inds Y0GComplUSGraphV=YNVF=(VN2)E=(V2)

Proof

Step Hyp Ref Expression
1 cusgrsizeindb0.v V=VtxG
2 cusgrsizeindb0.e E=EdgG
3 cusgrsizeinds.f F=eE|Ne
4 1 fvexi VV
5 hashnn0n0nn VVY0V=YNVY
6 5 anassrs VVY0V=YNVY
7 simplll VVV=YNVYVV
8 simplr VVV=YNVYNV
9 eleq1 Y=VYV
10 9 eqcoms V=YYV
11 nnm1nn0 VV10
12 10 11 syl6bi V=YYV10
13 12 ad2antlr VVV=YNVYV10
14 13 imp VVV=YNVYV10
15 nncn VV
16 1cnd V1
17 15 16 npcand VV-1+1=V
18 17 eqcomd VV=V-1+1
19 10 18 syl6bi V=YYV=V-1+1
20 19 ad2antlr VVV=YNVYV=V-1+1
21 20 imp VVV=YNVYV=V-1+1
22 hashdifsnp1 VVNVV10V=V-1+1VN=V1
23 22 imp VVNVV10V=V-1+1VN=V1
24 7 8 14 21 23 syl31anc VVV=YNVYVN=V1
25 oveq1 VN=V1(VN2)=(V12)
26 25 eqeq2d VN=V1F=(VN2)F=(V12)
27 10 ad2antlr VVV=YNVYV
28 nnnn0 VV0
29 hashclb VVVFinV0
30 28 29 syl5ibrcom VVVVFin
31 1 2 3 cusgrsizeinds GComplUSGraphVFinNVE=V-1+F
32 oveq2 F=(V12)V-1+F=V-1+(V12)
33 32 eqeq2d F=(V12)E=V-1+FE=V-1+(V12)
34 33 adantl VF=(V12)E=V-1+FE=V-1+(V12)
35 bcn2m1 VV-1+(V12)=(V2)
36 35 eqeq2d VE=V-1+(V12)E=(V2)
37 36 biimpd VE=V-1+(V12)E=(V2)
38 37 adantr VF=(V12)E=V-1+(V12)E=(V2)
39 34 38 sylbid VF=(V12)E=V-1+FE=(V2)
40 39 ex VF=(V12)E=V-1+FE=(V2)
41 40 com3r E=V-1+FVF=(V12)E=(V2)
42 31 41 syl GComplUSGraphVFinNVVF=(V12)E=(V2)
43 42 3exp GComplUSGraphVFinNVVF=(V12)E=(V2)
44 43 com14 VVFinNVGComplUSGraphF=(V12)E=(V2)
45 30 44 syldc VVVNVGComplUSGraphF=(V12)E=(V2)
46 45 com23 VVNVVGComplUSGraphF=(V12)E=(V2)
47 46 adantr VVV=YNVVGComplUSGraphF=(V12)E=(V2)
48 47 imp VVV=YNVVGComplUSGraphF=(V12)E=(V2)
49 27 48 sylbid VVV=YNVYGComplUSGraphF=(V12)E=(V2)
50 49 imp VVV=YNVYGComplUSGraphF=(V12)E=(V2)
51 50 com13 F=(V12)GComplUSGraphVVV=YNVYE=(V2)
52 26 51 syl6bi VN=V1F=(VN2)GComplUSGraphVVV=YNVYE=(V2)
53 52 com24 VN=V1VVV=YNVYGComplUSGraphF=(VN2)E=(V2)
54 24 53 mpcom VVV=YNVYGComplUSGraphF=(VN2)E=(V2)
55 54 ex VVV=YNVYGComplUSGraphF=(VN2)E=(V2)
56 55 adantllr VVY0V=YNVYGComplUSGraphF=(VN2)E=(V2)
57 6 56 mpd VVY0V=YNVGComplUSGraphF=(VN2)E=(V2)
58 57 exp41 VVY0V=YNVGComplUSGraphF=(VN2)E=(V2)
59 58 com25 VVGComplUSGraphV=YNVY0F=(VN2)E=(V2)
60 4 59 ax-mp GComplUSGraphV=YNVY0F=(VN2)E=(V2)
61 60 3imp GComplUSGraphV=YNVY0F=(VN2)E=(V2)
62 61 com12 Y0GComplUSGraphV=YNVF=(VN2)E=(V2)