Metamath Proof Explorer


Theorem cvmcov

Description: Property of a covering map. In order to make the covering property more manageable, we define here the set S ( k ) of all even coverings of an open set k in the range. Then the covering property states that every point has a neighborhood which has an even covering. (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypotheses cvmcov.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
cvmcov.2 X = J
Assertion cvmcov F C CovMap J P X x J P x S x

Proof

Step Hyp Ref Expression
1 cvmcov.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 cvmcov.2 X = J
3 1 2 iscvm F C CovMap J C Top J Top F C Cn J x X k J x k S k
4 3 simprbi F C CovMap J x X k J x k S k
5 eleq1 x = P x k P k
6 5 anbi1d x = P x k S k P k S k
7 6 rexbidv x = P k J x k S k k J P k S k
8 7 rspcv P X x X k J x k S k k J P k S k
9 4 8 mpan9 F C CovMap J P X k J P k S k
10 nfv k P x
11 nfmpt1 _ k k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
12 1 11 nfcxfr _ k S
13 nfcv _ k x
14 12 13 nffv _ k S x
15 nfcv _ k
16 14 15 nfne k S x
17 10 16 nfan k P x S x
18 nfv x P k S k
19 eleq2w x = k P x P k
20 fveq2 x = k S x = S k
21 20 neeq1d x = k S x S k
22 19 21 anbi12d x = k P x S x P k S k
23 17 18 22 cbvrexw x J P x S x k J P k S k
24 9 23 sylibr F C CovMap J P X x J P x S x