Metamath Proof Explorer


Theorem cvrat

Description: A nonzero Hilbert lattice element less than the join of two atoms is an atom. ( atcvati analog.) (Contributed by NM, 22-Nov-2011)

Ref Expression
Hypotheses cvrat.b B=BaseK
cvrat.s <˙=<K
cvrat.j ˙=joinK
cvrat.z 0˙=0.K
cvrat.a A=AtomsK
Assertion cvrat KHLXBPAQAX0˙X<˙P˙QXA

Proof

Step Hyp Ref Expression
1 cvrat.b B=BaseK
2 cvrat.s <˙=<K
3 cvrat.j ˙=joinK
4 cvrat.z 0˙=0.K
5 cvrat.a A=AtomsK
6 1 2 3 4 5 cvratlem KHLXBPAQAX0˙X<˙P˙Q¬PKXXA
7 hllat KHLKLat
8 7 adantr KHLXBPAQAKLat
9 simpr2 KHLXBPAQAPA
10 1 5 atbase PAPB
11 9 10 syl KHLXBPAQAPB
12 simpr3 KHLXBPAQAQA
13 1 5 atbase QAQB
14 12 13 syl KHLXBPAQAQB
15 1 3 latjcom KLatPBQBP˙Q=Q˙P
16 8 11 14 15 syl3anc KHLXBPAQAP˙Q=Q˙P
17 16 breq2d KHLXBPAQAX<˙P˙QX<˙Q˙P
18 17 anbi2d KHLXBPAQAX0˙X<˙P˙QX0˙X<˙Q˙P
19 simpl KHLXBPAQAKHL
20 simpr1 KHLXBPAQAXB
21 1 2 3 4 5 cvratlem KHLXBQAPAX0˙X<˙Q˙P¬QKXXA
22 21 ex KHLXBQAPAX0˙X<˙Q˙P¬QKXXA
23 19 20 12 9 22 syl13anc KHLXBPAQAX0˙X<˙Q˙P¬QKXXA
24 18 23 sylbid KHLXBPAQAX0˙X<˙P˙Q¬QKXXA
25 24 imp KHLXBPAQAX0˙X<˙P˙Q¬QKXXA
26 hlpos KHLKPoset
27 26 adantr KHLXBPAQAKPoset
28 1 3 latjcl KLatPBQBP˙QB
29 8 11 14 28 syl3anc KHLXBPAQAP˙QB
30 eqid K=K
31 1 30 2 pltnle KPosetXBP˙QBX<˙P˙Q¬P˙QKX
32 31 ex KPosetXBP˙QBX<˙P˙Q¬P˙QKX
33 27 20 29 32 syl3anc KHLXBPAQAX<˙P˙Q¬P˙QKX
34 1 30 3 latjle12 KLatPBQBXBPKXQKXP˙QKX
35 8 11 14 20 34 syl13anc KHLXBPAQAPKXQKXP˙QKX
36 35 biimpd KHLXBPAQAPKXQKXP˙QKX
37 33 36 nsyld KHLXBPAQAX<˙P˙Q¬PKXQKX
38 ianor ¬PKXQKX¬PKX¬QKX
39 37 38 imbitrdi KHLXBPAQAX<˙P˙Q¬PKX¬QKX
40 39 imp KHLXBPAQAX<˙P˙Q¬PKX¬QKX
41 40 adantrl KHLXBPAQAX0˙X<˙P˙Q¬PKX¬QKX
42 6 25 41 mpjaod KHLXBPAQAX0˙X<˙P˙QXA
43 42 ex KHLXBPAQAX0˙X<˙P˙QXA