Metamath Proof Explorer


Theorem cvrnbtwn2

Description: The covers relation implies no in-betweenness. ( cvnbtwn2 analog.) (Contributed by NM, 17-Nov-2011)

Ref Expression
Hypotheses cvrletr.b B=BaseK
cvrletr.l ˙=K
cvrletr.s <˙=<K
cvrletr.c C=K
Assertion cvrnbtwn2 KPosetXBYBZBXCYX<˙ZZ˙YZ=Y

Proof

Step Hyp Ref Expression
1 cvrletr.b B=BaseK
2 cvrletr.l ˙=K
3 cvrletr.s <˙=<K
4 cvrletr.c C=K
5 1 3 4 cvrnbtwn KPosetXBYBZBXCY¬X<˙ZZ<˙Y
6 5 3expia KPosetXBYBZBXCY¬X<˙ZZ<˙Y
7 iman X<˙ZZ˙YZ=Y¬X<˙ZZ˙Y¬Z=Y
8 anass X<˙ZZ˙Y¬Z=YX<˙ZZ˙Y¬Z=Y
9 simpl KPosetXBYBZBKPoset
10 simpr3 KPosetXBYBZBZB
11 simpr2 KPosetXBYBZBYB
12 2 3 pltval KPosetZBYBZ<˙YZ˙YZY
13 9 10 11 12 syl3anc KPosetXBYBZBZ<˙YZ˙YZY
14 df-ne ZY¬Z=Y
15 14 anbi2i Z˙YZYZ˙Y¬Z=Y
16 13 15 bitrdi KPosetXBYBZBZ<˙YZ˙Y¬Z=Y
17 16 anbi2d KPosetXBYBZBX<˙ZZ<˙YX<˙ZZ˙Y¬Z=Y
18 8 17 bitr4id KPosetXBYBZBX<˙ZZ˙Y¬Z=YX<˙ZZ<˙Y
19 18 notbid KPosetXBYBZB¬X<˙ZZ˙Y¬Z=Y¬X<˙ZZ<˙Y
20 7 19 bitr2id KPosetXBYBZB¬X<˙ZZ<˙YX<˙ZZ˙YZ=Y
21 6 20 sylibd KPosetXBYBZBXCYX<˙ZZ˙YZ=Y
22 21 3impia KPosetXBYBZBXCYX<˙ZZ˙YZ=Y
23 1 3 4 cvrlt KPosetXBYBXCYX<˙Y
24 23 ex KPosetXBYBXCYX<˙Y
25 24 3adant3r3 KPosetXBYBZBXCYX<˙Y
26 25 3impia KPosetXBYBZBXCYX<˙Y
27 breq2 Z=YX<˙ZX<˙Y
28 26 27 syl5ibrcom KPosetXBYBZBXCYZ=YX<˙Z
29 1 2 posref KPosetYBY˙Y
30 29 3ad2antr2 KPosetXBYBZBY˙Y
31 breq1 Z=YZ˙YY˙Y
32 30 31 syl5ibrcom KPosetXBYBZBZ=YZ˙Y
33 32 3adant3 KPosetXBYBZBXCYZ=YZ˙Y
34 28 33 jcad KPosetXBYBZBXCYZ=YX<˙ZZ˙Y
35 22 34 impbid KPosetXBYBZBXCYX<˙ZZ˙YZ=Y