Metamath Proof Explorer


Theorem cxpadd

Description: Sum of exponents law for complex exponentiation. Proposition 10-4.2(a) of Gleason p. 135. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion cxpadd AA0BCAB+C=ABAC

Proof

Step Hyp Ref Expression
1 simp2 AA0BCB
2 simp3 AA0BCC
3 logcl AA0logA
4 3 3ad2ant1 AA0BClogA
5 1 2 4 adddird AA0BCB+ClogA=BlogA+ClogA
6 5 fveq2d AA0BCeB+ClogA=eBlogA+ClogA
7 1 4 mulcld AA0BCBlogA
8 2 4 mulcld AA0BCClogA
9 efadd BlogAClogAeBlogA+ClogA=eBlogAeClogA
10 7 8 9 syl2anc AA0BCeBlogA+ClogA=eBlogAeClogA
11 6 10 eqtrd AA0BCeB+ClogA=eBlogAeClogA
12 simp1l AA0BCA
13 simp1r AA0BCA0
14 addcl BCB+C
15 14 3adant1 AA0BCB+C
16 cxpef AA0B+CAB+C=eB+ClogA
17 12 13 15 16 syl3anc AA0BCAB+C=eB+ClogA
18 cxpef AA0BAB=eBlogA
19 12 13 1 18 syl3anc AA0BCAB=eBlogA
20 cxpef AA0CAC=eClogA
21 12 13 2 20 syl3anc AA0BCAC=eClogA
22 19 21 oveq12d AA0BCABAC=eBlogAeClogA
23 11 17 22 3eqtr4d AA0BCAB+C=ABAC