Metamath Proof Explorer


Theorem cyggex2

Description: The exponent of a cyclic group is 0 if the group is infinite, otherwise it equals the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses cygctb.1 B = Base G
cyggex.o E = gEx G
Assertion cyggex2 G CycGrp E = if B Fin B 0

Proof

Step Hyp Ref Expression
1 cygctb.1 B = Base G
2 cyggex.o E = gEx G
3 eqid G = G
4 eqid x B | ran n n G x = B = x B | ran n n G x = B
5 1 3 4 iscyg2 G CycGrp G Grp x B | ran n n G x = B
6 n0 x B | ran n n G x = B y y x B | ran n n G x = B
7 ssrab2 x B | ran n n G x = B B
8 simpr G Grp y x B | ran n n G x = B y x B | ran n n G x = B
9 7 8 sseldi G Grp y x B | ran n n G x = B y B
10 eqid od G = od G
11 1 3 4 10 cyggenod2 G Grp y x B | ran n n G x = B od G y = if B Fin B 0
12 9 11 jca G Grp y x B | ran n n G x = B y B od G y = if B Fin B 0
13 12 ex G Grp y x B | ran n n G x = B y B od G y = if B Fin B 0
14 1 2 gexcl G Grp E 0
15 14 adantr G Grp y B od G y = if B Fin B 0 E 0
16 hashcl B Fin B 0
17 16 adantl G Grp y B od G y = if B Fin B 0 B Fin B 0
18 0nn0 0 0
19 18 a1i G Grp y B od G y = if B Fin B 0 ¬ B Fin 0 0
20 17 19 ifclda G Grp y B od G y = if B Fin B 0 if B Fin B 0 0
21 breq2 B = if B Fin B 0 E B E if B Fin B 0
22 breq2 0 = if B Fin B 0 E 0 E if B Fin B 0
23 1 2 gexdvds3 G Grp B Fin E B
24 23 adantlr G Grp y B od G y = if B Fin B 0 B Fin E B
25 15 adantr G Grp y B od G y = if B Fin B 0 ¬ B Fin E 0
26 nn0z E 0 E
27 dvds0 E E 0
28 25 26 27 3syl G Grp y B od G y = if B Fin B 0 ¬ B Fin E 0
29 21 22 24 28 ifbothda G Grp y B od G y = if B Fin B 0 E if B Fin B 0
30 simprr G Grp y B od G y = if B Fin B 0 od G y = if B Fin B 0
31 1 2 10 gexod G Grp y B od G y E
32 31 adantrr G Grp y B od G y = if B Fin B 0 od G y E
33 30 32 eqbrtrrd G Grp y B od G y = if B Fin B 0 if B Fin B 0 E
34 dvdseq E 0 if B Fin B 0 0 E if B Fin B 0 if B Fin B 0 E E = if B Fin B 0
35 15 20 29 33 34 syl22anc G Grp y B od G y = if B Fin B 0 E = if B Fin B 0
36 35 ex G Grp y B od G y = if B Fin B 0 E = if B Fin B 0
37 13 36 syld G Grp y x B | ran n n G x = B E = if B Fin B 0
38 37 exlimdv G Grp y y x B | ran n n G x = B E = if B Fin B 0
39 6 38 syl5bi G Grp x B | ran n n G x = B E = if B Fin B 0
40 39 imp G Grp x B | ran n n G x = B E = if B Fin B 0
41 5 40 sylbi G CycGrp E = if B Fin B 0