Metamath Proof Explorer


Theorem dalawlem7

Description: Lemma for dalaw . Second piece of dalawlem8 . (Contributed by NM, 6-Oct-2012)

Ref Expression
Hypotheses dalawlem.l ˙=K
dalawlem.j ˙=joinK
dalawlem.m ˙=meetK
dalawlem.a A=AtomsK
Assertion dalawlem7 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S

Proof

Step Hyp Ref Expression
1 dalawlem.l ˙=K
2 dalawlem.j ˙=joinK
3 dalawlem.m ˙=meetK
4 dalawlem.a A=AtomsK
5 eqid BaseK=BaseK
6 simp11 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAKHL
7 6 hllatd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAKLat
8 simp21 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAPA
9 simp22 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQA
10 5 2 4 hlatjcl KHLPAQAP˙QBaseK
11 6 8 9 10 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙QBaseK
12 simp31 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUASA
13 5 4 atbase SASBaseK
14 12 13 syl KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUASBaseK
15 5 2 latjcl KLatP˙QBaseKSBaseKP˙Q˙SBaseK
16 7 11 14 15 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙SBaseK
17 simp32 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUATA
18 5 4 atbase TATBaseK
19 17 18 syl KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUATBaseK
20 5 3 latmcl KLatP˙Q˙SBaseKTBaseKP˙Q˙S˙TBaseK
21 7 16 19 20 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙TBaseK
22 simp23 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUARA
23 5 2 4 hlatjcl KHLQARAQ˙RBaseK
24 6 9 22 23 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙RBaseK
25 simp33 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAUA
26 5 2 4 hlatjcl KHLTAUAT˙UBaseK
27 6 17 25 26 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAT˙UBaseK
28 5 3 latmcl KLatQ˙RBaseKT˙UBaseKQ˙R˙T˙UBaseK
29 7 24 27 28 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙T˙UBaseK
30 5 2 4 hlatjcl KHLRAPAR˙PBaseK
31 6 22 8 30 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙PBaseK
32 5 2 4 hlatjcl KHLUASAU˙SBaseK
33 6 25 12 32 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAU˙SBaseK
34 5 3 latmcl KLatR˙PBaseKU˙SBaseKR˙P˙U˙SBaseK
35 7 31 33 34 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAR˙P˙U˙SBaseK
36 5 2 latjcl KLatQ˙R˙T˙UBaseKR˙P˙U˙SBaseKQ˙R˙T˙U˙R˙P˙U˙SBaseK
37 7 29 35 36 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙T˙U˙R˙P˙U˙SBaseK
38 hlol KHLKOL
39 6 38 syl KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAKOL
40 5 2 4 hlatjcl KHLPASAP˙SBaseK
41 6 8 12 40 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙SBaseK
42 5 4 atbase QAQBaseK
43 9 42 syl KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQBaseK
44 5 2 latjcl KLatP˙SBaseKQBaseKP˙S˙QBaseK
45 7 41 43 44 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙QBaseK
46 5 2 4 hlatjcl KHLQATAQ˙TBaseK
47 6 9 17 46 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙TBaseK
48 5 3 latmassOLD KOLP˙S˙QBaseKQ˙TBaseKTBaseKP˙S˙Q˙Q˙T˙T=P˙S˙Q˙Q˙T˙T
49 39 45 47 19 48 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙Q˙T˙T=P˙S˙Q˙Q˙T˙T
50 2 4 hlatj32 KHLPASAQAP˙S˙Q=P˙Q˙S
51 6 8 12 9 50 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q=P˙Q˙S
52 1 2 4 hlatlej2 KHLQATAT˙Q˙T
53 6 9 17 52 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAT˙Q˙T
54 5 1 3 latleeqm2 KLatTBaseKQ˙TBaseKT˙Q˙TQ˙T˙T=T
55 7 19 47 54 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAT˙Q˙TQ˙T˙T=T
56 53 55 mpbid KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙T˙T=T
57 51 56 oveq12d KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙Q˙T˙T=P˙Q˙S˙T
58 49 57 eqtr2d KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T=P˙S˙Q˙Q˙T˙T
59 simp12 KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙Q˙R
60 5 3 latmcl KLatP˙SBaseKQ˙TBaseKP˙S˙Q˙TBaseK
61 7 41 47 60 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙TBaseK
62 5 1 2 latjlej1 KLatP˙S˙Q˙TBaseKQ˙RBaseKQBaseKP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙Q˙Q˙R˙Q
63 7 61 24 43 62 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙Q˙Q˙R˙Q
64 59 63 mpd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙Q˙Q˙R˙Q
65 1 2 4 hlatlej1 KHLQATAQ˙Q˙T
66 6 9 17 65 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙Q˙T
67 5 1 2 3 4 atmod4i1 KHLQAP˙SBaseKQ˙TBaseKQ˙Q˙TP˙S˙Q˙T˙Q=P˙S˙Q˙Q˙T
68 6 9 41 47 66 67 syl131anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙T˙Q=P˙S˙Q˙Q˙T
69 2 4 hlatj32 KHLQARAQAQ˙R˙Q=Q˙Q˙R
70 6 9 22 9 69 syl13anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙Q=Q˙Q˙R
71 5 2 latjidm KLatQBaseKQ˙Q=Q
72 7 43 71 syl2anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙Q=Q
73 72 oveq1d KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙Q˙R=Q˙R
74 70 73 eqtrd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙Q=Q˙R
75 64 68 74 3brtr3d KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙Q˙T˙Q˙R
76 1 2 4 hlatlej1 KHLTAUAT˙T˙U
77 6 17 25 76 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAT˙T˙U
78 5 3 latmcl KLatP˙S˙QBaseKQ˙TBaseKP˙S˙Q˙Q˙TBaseK
79 7 45 47 78 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙Q˙TBaseK
80 5 1 3 latmlem12 KLatP˙S˙Q˙Q˙TBaseKQ˙RBaseKTBaseKT˙UBaseKP˙S˙Q˙Q˙T˙Q˙RT˙T˙UP˙S˙Q˙Q˙T˙T˙Q˙R˙T˙U
81 7 79 24 19 27 80 syl122anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙Q˙T˙Q˙RT˙T˙UP˙S˙Q˙Q˙T˙T˙Q˙R˙T˙U
82 75 77 81 mp2and KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙S˙Q˙Q˙T˙T˙Q˙R˙T˙U
83 58 82 eqbrtrd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U
84 5 1 2 latlej1 KLatQ˙R˙T˙UBaseKR˙P˙U˙SBaseKQ˙R˙T˙U˙Q˙R˙T˙U˙R˙P˙U˙S
85 7 29 35 84 syl3anc KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAQ˙R˙T˙U˙Q˙R˙T˙U˙R˙P˙U˙S
86 5 1 7 21 29 37 83 85 lattrd KHLP˙S˙Q˙T˙Q˙RP˙S˙Q˙T˙R˙UPAQARASATAUAP˙Q˙S˙T˙Q˙R˙T˙U˙R˙P˙U˙S