Metamath Proof Explorer


Theorem dalem3

Description: Lemma for dalemdnee . (Contributed by NM, 10-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem3.m ˙=meetK
dalem3.o O=LPlanesK
dalem3.y Y=P˙Q˙R
dalem3.z Z=S˙T˙U
dalem3.d D=P˙Q˙S˙T
dalem3.e E=Q˙R˙T˙U
Assertion dalem3 φDQDE

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem3.m ˙=meetK
6 dalem3.o O=LPlanesK
7 dalem3.y Y=P˙Q˙R
8 dalem3.z Z=S˙T˙U
9 dalem3.d D=P˙Q˙S˙T
10 dalem3.e E=Q˙R˙T˙U
11 1 dalemkehl φKHL
12 1 dalempea φPA
13 1 dalemqea φQA
14 1 dalemrea φRA
15 1 dalemyeo φYO
16 2 3 4 6 7 lplnric KHLPAQARAYO¬R˙P˙Q
17 11 12 13 14 15 16 syl131anc φ¬R˙P˙Q
18 17 adantr φDQ¬R˙P˙Q
19 1 dalemkelat φKLat
20 eqid BaseK=BaseK
21 20 3 4 hlatjcl KHLQARAQ˙RBaseK
22 11 13 14 21 syl3anc φQ˙RBaseK
23 1 3 4 dalemtjueb φT˙UBaseK
24 20 2 5 latmle1 KLatQ˙RBaseKT˙UBaseKQ˙R˙T˙U˙Q˙R
25 19 22 23 24 syl3anc φQ˙R˙T˙U˙Q˙R
26 10 25 eqbrtrid φE˙Q˙R
27 breq1 D=ED˙Q˙RE˙Q˙R
28 26 27 syl5ibrcom φD=ED˙Q˙R
29 28 adantr φDQD=ED˙Q˙R
30 11 adantr φDQKHL
31 1 2 3 4 5 6 7 8 9 dalemdea φDA
32 31 adantr φDQDA
33 14 adantr φDQRA
34 13 adantr φDQQA
35 simpr φDQDQ
36 2 3 4 hlatexch1 KHLDARAQADQD˙Q˙RR˙Q˙D
37 30 32 33 34 35 36 syl131anc φDQD˙Q˙RR˙Q˙D
38 2 3 4 hlatlej2 KHLPAQAQ˙P˙Q
39 11 12 13 38 syl3anc φQ˙P˙Q
40 1 3 4 dalempjqeb φP˙QBaseK
41 1 3 4 dalemsjteb φS˙TBaseK
42 20 2 5 latmle1 KLatP˙QBaseKS˙TBaseKP˙Q˙S˙T˙P˙Q
43 19 40 41 42 syl3anc φP˙Q˙S˙T˙P˙Q
44 9 43 eqbrtrid φD˙P˙Q
45 1 4 dalemqeb φQBaseK
46 20 4 atbase DADBaseK
47 31 46 syl φDBaseK
48 20 2 3 latjle12 KLatQBaseKDBaseKP˙QBaseKQ˙P˙QD˙P˙QQ˙D˙P˙Q
49 19 45 47 40 48 syl13anc φQ˙P˙QD˙P˙QQ˙D˙P˙Q
50 39 44 49 mpbi2and φQ˙D˙P˙Q
51 1 4 dalemreb φRBaseK
52 20 3 4 hlatjcl KHLQADAQ˙DBaseK
53 11 13 31 52 syl3anc φQ˙DBaseK
54 20 2 lattr KLatRBaseKQ˙DBaseKP˙QBaseKR˙Q˙DQ˙D˙P˙QR˙P˙Q
55 19 51 53 40 54 syl13anc φR˙Q˙DQ˙D˙P˙QR˙P˙Q
56 50 55 mpan2d φR˙Q˙DR˙P˙Q
57 56 adantr φDQR˙Q˙DR˙P˙Q
58 29 37 57 3syld φDQD=ER˙P˙Q
59 58 necon3bd φDQ¬R˙P˙QDE
60 18 59 mpd φDQDE