Metamath Proof Explorer


Theorem dchrisum0lem1a

Description: Lemma for dchrisum0lem1 . (Contributed by Mario Carneiro, 7-Jun-2016)

Ref Expression
Assertion dchrisum0lem1a φX+D1XXX2DX2DX

Proof

Step Hyp Ref Expression
1 elfznn D1XD
2 1 adantl φX+D1XD
3 2 nnred φX+D1XD
4 simpr φX+X+
5 4 rpregt0d φX+X0<X
6 5 adantr φX+D1XX0<X
7 6 simpld φX+D1XX
8 4 adantr φX+D1XX+
9 8 rpge0d φX+D1X0X
10 4 rpred φX+X
11 fznnfl XD1XDDX
12 10 11 syl φX+D1XDDX
13 12 simplbda φX+D1XDX
14 3 7 7 9 13 lemul2ad φX+D1XXDXX
15 rpcn X+X
16 15 adantl φX+X
17 16 sqvald φX+X2=XX
18 17 adantr φX+D1XX2=XX
19 14 18 breqtrrd φX+D1XXDX2
20 2z 2
21 rpexpcl X+2X2+
22 4 20 21 sylancl φX+X2+
23 22 rpred φX+X2
24 23 adantr φX+D1XX2
25 2 nnrpd φX+D1XD+
26 7 24 25 lemuldivd φX+D1XXDX2XX2D
27 19 26 mpbid φX+D1XXX2D
28 nndivre X2DX2D
29 23 1 28 syl2an φX+D1XX2D
30 flword2 XX2DXX2DX2DX
31 7 29 27 30 syl3anc φX+D1XX2DX
32 27 31 jca φX+D1XXX2DX2DX