Step |
Hyp |
Ref |
Expression |
1 |
|
decpmatmul.p |
|
2 |
|
decpmatmul.c |
|
3 |
|
decpmatmul.b |
|
4 |
|
decpmatmul.a |
|
5 |
|
decpmatmulsumfsupp.m |
|
6 |
|
decpmatmulsumfsupp.0 |
|
7 |
6
|
fvexi |
|
8 |
7
|
a1i |
|
9 |
|
ovexd |
|
10 |
|
oveq2 |
|
11 |
|
oveq1 |
|
12 |
11
|
oveq2d |
|
13 |
12
|
oveq2d |
|
14 |
10 13
|
mpteq12dv |
|
15 |
14
|
oveq2d |
|
16 |
|
simpll |
|
17 |
|
simplr |
|
18 |
1 2
|
pmatring |
|
19 |
18
|
anim1i |
|
20 |
|
3anass |
|
21 |
19 20
|
sylibr |
|
22 |
|
eqid |
|
23 |
3 22
|
ringcl |
|
24 |
21 23
|
syl |
|
25 |
|
eqid |
|
26 |
1 2 3 25
|
pmatcoe1fsupp |
|
27 |
16 17 24 26
|
syl3anc |
|
28 |
|
fvoveq1 |
|
29 |
28
|
fveq1d |
|
30 |
29
|
eqeq1d |
|
31 |
|
oveq2 |
|
32 |
31
|
fveq2d |
|
33 |
32
|
fveq1d |
|
34 |
33
|
eqeq1d |
|
35 |
30 34
|
rspc2va |
|
36 |
35
|
expcom |
|
37 |
36
|
adantl |
|
38 |
37
|
3impib |
|
39 |
38
|
mpoeq3dva |
|
40 |
4 25
|
mat0op |
|
41 |
6 40
|
eqtrid |
|
42 |
41
|
ad3antrrr |
|
43 |
39 42
|
eqtr4d |
|
44 |
43
|
ex |
|
45 |
44
|
imim2d |
|
46 |
45
|
ralimdva |
|
47 |
46
|
reximdv |
|
48 |
27 47
|
mpd |
|
49 |
5
|
oveqi |
|
50 |
49
|
a1i |
|
51 |
50
|
mpteq2dv |
|
52 |
51
|
oveq2d |
|
53 |
1 2 3 4
|
decpmatmul |
|
54 |
53
|
ad4ant234 |
|
55 |
2 3
|
decpmatval |
|
56 |
24 55
|
sylan |
|
57 |
52 54 56
|
3eqtr2d |
|
58 |
57
|
eqeq1d |
|
59 |
58
|
imbi2d |
|
60 |
59
|
ralbidva |
|
61 |
60
|
rexbidv |
|
62 |
48 61
|
mpbird |
|
63 |
8 9 15 62
|
mptnn0fsuppd |
|