| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decpmatmul.p |
|
| 2 |
|
decpmatmul.c |
|
| 3 |
|
decpmatmul.b |
|
| 4 |
|
decpmatmul.a |
|
| 5 |
|
decpmatmulsumfsupp.m |
|
| 6 |
|
decpmatmulsumfsupp.0 |
|
| 7 |
6
|
fvexi |
|
| 8 |
7
|
a1i |
|
| 9 |
|
ovexd |
|
| 10 |
|
oveq2 |
|
| 11 |
|
oveq1 |
|
| 12 |
11
|
oveq2d |
|
| 13 |
12
|
oveq2d |
|
| 14 |
10 13
|
mpteq12dv |
|
| 15 |
14
|
oveq2d |
|
| 16 |
|
simpll |
|
| 17 |
|
simplr |
|
| 18 |
1 2
|
pmatring |
|
| 19 |
18
|
anim1i |
|
| 20 |
|
3anass |
|
| 21 |
19 20
|
sylibr |
|
| 22 |
|
eqid |
|
| 23 |
3 22
|
ringcl |
|
| 24 |
21 23
|
syl |
|
| 25 |
|
eqid |
|
| 26 |
1 2 3 25
|
pmatcoe1fsupp |
|
| 27 |
16 17 24 26
|
syl3anc |
|
| 28 |
|
fvoveq1 |
|
| 29 |
28
|
fveq1d |
|
| 30 |
29
|
eqeq1d |
|
| 31 |
|
oveq2 |
|
| 32 |
31
|
fveq2d |
|
| 33 |
32
|
fveq1d |
|
| 34 |
33
|
eqeq1d |
|
| 35 |
30 34
|
rspc2va |
|
| 36 |
35
|
expcom |
|
| 37 |
36
|
adantl |
|
| 38 |
37
|
3impib |
|
| 39 |
38
|
mpoeq3dva |
|
| 40 |
4 25
|
mat0op |
|
| 41 |
6 40
|
eqtrid |
|
| 42 |
41
|
ad3antrrr |
|
| 43 |
39 42
|
eqtr4d |
|
| 44 |
43
|
ex |
|
| 45 |
44
|
imim2d |
|
| 46 |
45
|
ralimdva |
|
| 47 |
46
|
reximdv |
|
| 48 |
27 47
|
mpd |
|
| 49 |
5
|
oveqi |
|
| 50 |
49
|
a1i |
|
| 51 |
50
|
mpteq2dv |
|
| 52 |
51
|
oveq2d |
|
| 53 |
1 2 3 4
|
decpmatmul |
|
| 54 |
53
|
ad4ant234 |
|
| 55 |
2 3
|
decpmatval |
|
| 56 |
24 55
|
sylan |
|
| 57 |
52 54 56
|
3eqtr2d |
|
| 58 |
57
|
eqeq1d |
|
| 59 |
58
|
imbi2d |
|
| 60 |
59
|
ralbidva |
|
| 61 |
60
|
rexbidv |
|
| 62 |
48 61
|
mpbird |
|
| 63 |
8 9 15 62
|
mptnn0fsuppd |
|