Description: Lemma 0 for pm2mpmhm . (Contributed by AV, 21-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | decpmatmul.p | |
|
decpmatmul.c | |
||
decpmatmul.b | |
||
decpmatmul.a | |
||
decpmatmulsumfsupp.m | |
||
decpmatmulsumfsupp.0 | |
||
Assertion | decpmatmulsumfsupp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decpmatmul.p | |
|
2 | decpmatmul.c | |
|
3 | decpmatmul.b | |
|
4 | decpmatmul.a | |
|
5 | decpmatmulsumfsupp.m | |
|
6 | decpmatmulsumfsupp.0 | |
|
7 | 6 | fvexi | |
8 | 7 | a1i | |
9 | ovexd | |
|
10 | oveq2 | |
|
11 | oveq1 | |
|
12 | 11 | oveq2d | |
13 | 12 | oveq2d | |
14 | 10 13 | mpteq12dv | |
15 | 14 | oveq2d | |
16 | simpll | |
|
17 | simplr | |
|
18 | 1 2 | pmatring | |
19 | 18 | anim1i | |
20 | 3anass | |
|
21 | 19 20 | sylibr | |
22 | eqid | |
|
23 | 3 22 | ringcl | |
24 | 21 23 | syl | |
25 | eqid | |
|
26 | 1 2 3 25 | pmatcoe1fsupp | |
27 | 16 17 24 26 | syl3anc | |
28 | fvoveq1 | |
|
29 | 28 | fveq1d | |
30 | 29 | eqeq1d | |
31 | oveq2 | |
|
32 | 31 | fveq2d | |
33 | 32 | fveq1d | |
34 | 33 | eqeq1d | |
35 | 30 34 | rspc2va | |
36 | 35 | expcom | |
37 | 36 | adantl | |
38 | 37 | 3impib | |
39 | 38 | mpoeq3dva | |
40 | 4 25 | mat0op | |
41 | 6 40 | eqtrid | |
42 | 41 | ad3antrrr | |
43 | 39 42 | eqtr4d | |
44 | 43 | ex | |
45 | 44 | imim2d | |
46 | 45 | ralimdva | |
47 | 46 | reximdv | |
48 | 27 47 | mpd | |
49 | 5 | oveqi | |
50 | 49 | a1i | |
51 | 50 | mpteq2dv | |
52 | 51 | oveq2d | |
53 | 1 2 3 4 | decpmatmul | |
54 | 53 | ad4ant234 | |
55 | 2 3 | decpmatval | |
56 | 24 55 | sylan | |
57 | 52 54 56 | 3eqtr2d | |
58 | 57 | eqeq1d | |
59 | 58 | imbi2d | |
60 | 59 | ralbidva | |
61 | 60 | rexbidv | |
62 | 48 61 | mpbird | |
63 | 8 9 15 62 | mptnn0fsuppd | |