Metamath Proof Explorer


Theorem decpmatmulsumfsupp

Description: Lemma 0 for pm2mpmhm . (Contributed by AV, 21-Oct-2019)

Ref Expression
Hypotheses decpmatmul.p P=Poly1R
decpmatmul.c C=NMatP
decpmatmul.b B=BaseC
decpmatmul.a A=NMatR
decpmatmulsumfsupp.m ·˙=A
decpmatmulsumfsupp.0 0˙=0A
Assertion decpmatmulsumfsupp NFinRRingxByBfinSupp0˙l0Ak=0lxdecompPMatk·˙ydecompPMatlk

Proof

Step Hyp Ref Expression
1 decpmatmul.p P=Poly1R
2 decpmatmul.c C=NMatP
3 decpmatmul.b B=BaseC
4 decpmatmul.a A=NMatR
5 decpmatmulsumfsupp.m ·˙=A
6 decpmatmulsumfsupp.0 0˙=0A
7 6 fvexi 0˙V
8 7 a1i NFinRRingxByB0˙V
9 ovexd NFinRRingxByBl0Ak=0lxdecompPMatk·˙ydecompPMatlkV
10 oveq2 l=n0l=0n
11 oveq1 l=nlk=nk
12 11 oveq2d l=nydecompPMatlk=ydecompPMatnk
13 12 oveq2d l=nxdecompPMatk·˙ydecompPMatlk=xdecompPMatk·˙ydecompPMatnk
14 10 13 mpteq12dv l=nk0lxdecompPMatk·˙ydecompPMatlk=k0nxdecompPMatk·˙ydecompPMatnk
15 14 oveq2d l=nAk=0lxdecompPMatk·˙ydecompPMatlk=Ak=0nxdecompPMatk·˙ydecompPMatnk
16 simpll NFinRRingxByBNFin
17 simplr NFinRRingxByBRRing
18 1 2 pmatring NFinRRingCRing
19 18 anim1i NFinRRingxByBCRingxByB
20 3anass CRingxByBCRingxByB
21 19 20 sylibr NFinRRingxByBCRingxByB
22 eqid C=C
23 3 22 ringcl CRingxByBxCyB
24 21 23 syl NFinRRingxByBxCyB
25 eqid 0R=0R
26 1 2 3 25 pmatcoe1fsupp NFinRRingxCyBs0n0s<naNbNcoe1axCybn=0R
27 16 17 24 26 syl3anc NFinRRingxByBs0n0s<naNbNcoe1axCybn=0R
28 fvoveq1 a=icoe1axCyb=coe1ixCyb
29 28 fveq1d a=icoe1axCybn=coe1ixCybn
30 29 eqeq1d a=icoe1axCybn=0Rcoe1ixCybn=0R
31 oveq2 b=jixCyb=ixCyj
32 31 fveq2d b=jcoe1ixCyb=coe1ixCyj
33 32 fveq1d b=jcoe1ixCybn=coe1ixCyjn
34 33 eqeq1d b=jcoe1ixCybn=0Rcoe1ixCyjn=0R
35 30 34 rspc2va iNjNaNbNcoe1axCybn=0Rcoe1ixCyjn=0R
36 35 expcom aNbNcoe1axCybn=0RiNjNcoe1ixCyjn=0R
37 36 adantl NFinRRingxByBn0aNbNcoe1axCybn=0RiNjNcoe1ixCyjn=0R
38 37 3impib NFinRRingxByBn0aNbNcoe1axCybn=0RiNjNcoe1ixCyjn=0R
39 38 mpoeq3dva NFinRRingxByBn0aNbNcoe1axCybn=0RiN,jNcoe1ixCyjn=iN,jN0R
40 4 25 mat0op NFinRRing0A=iN,jN0R
41 6 40 eqtrid NFinRRing0˙=iN,jN0R
42 41 ad3antrrr NFinRRingxByBn0aNbNcoe1axCybn=0R0˙=iN,jN0R
43 39 42 eqtr4d NFinRRingxByBn0aNbNcoe1axCybn=0RiN,jNcoe1ixCyjn=0˙
44 43 ex NFinRRingxByBn0aNbNcoe1axCybn=0RiN,jNcoe1ixCyjn=0˙
45 44 imim2d NFinRRingxByBn0s<naNbNcoe1axCybn=0Rs<niN,jNcoe1ixCyjn=0˙
46 45 ralimdva NFinRRingxByBn0s<naNbNcoe1axCybn=0Rn0s<niN,jNcoe1ixCyjn=0˙
47 46 reximdv NFinRRingxByBs0n0s<naNbNcoe1axCybn=0Rs0n0s<niN,jNcoe1ixCyjn=0˙
48 27 47 mpd NFinRRingxByBs0n0s<niN,jNcoe1ixCyjn=0˙
49 5 oveqi xdecompPMatk·˙ydecompPMatnk=xdecompPMatkAydecompPMatnk
50 49 a1i NFinRRingxByBn0xdecompPMatk·˙ydecompPMatnk=xdecompPMatkAydecompPMatnk
51 50 mpteq2dv NFinRRingxByBn0k0nxdecompPMatk·˙ydecompPMatnk=k0nxdecompPMatkAydecompPMatnk
52 51 oveq2d NFinRRingxByBn0Ak=0nxdecompPMatk·˙ydecompPMatnk=Ak=0nxdecompPMatkAydecompPMatnk
53 1 2 3 4 decpmatmul RRingxByBn0xCydecompPMatn=Ak=0nxdecompPMatkAydecompPMatnk
54 53 ad4ant234 NFinRRingxByBn0xCydecompPMatn=Ak=0nxdecompPMatkAydecompPMatnk
55 2 3 decpmatval xCyBn0xCydecompPMatn=iN,jNcoe1ixCyjn
56 24 55 sylan NFinRRingxByBn0xCydecompPMatn=iN,jNcoe1ixCyjn
57 52 54 56 3eqtr2d NFinRRingxByBn0Ak=0nxdecompPMatk·˙ydecompPMatnk=iN,jNcoe1ixCyjn
58 57 eqeq1d NFinRRingxByBn0Ak=0nxdecompPMatk·˙ydecompPMatnk=0˙iN,jNcoe1ixCyjn=0˙
59 58 imbi2d NFinRRingxByBn0s<nAk=0nxdecompPMatk·˙ydecompPMatnk=0˙s<niN,jNcoe1ixCyjn=0˙
60 59 ralbidva NFinRRingxByBn0s<nAk=0nxdecompPMatk·˙ydecompPMatnk=0˙n0s<niN,jNcoe1ixCyjn=0˙
61 60 rexbidv NFinRRingxByBs0n0s<nAk=0nxdecompPMatk·˙ydecompPMatnk=0˙s0n0s<niN,jNcoe1ixCyjn=0˙
62 48 61 mpbird NFinRRingxByBs0n0s<nAk=0nxdecompPMatk·˙ydecompPMatnk=0˙
63 8 9 15 62 mptnn0fsuppd NFinRRingxByBfinSupp0˙l0Ak=0lxdecompPMatk·˙ydecompPMatlk