Metamath Proof Explorer


Theorem deg1sublt

Description: Subtraction of two polynomials limited to the same degree with the same leading coefficient gives a polynomial with a smaller degree. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1sublt.d D = deg 1 R
deg1sublt.p P = Poly 1 R
deg1sublt.b B = Base P
deg1sublt.m - ˙ = - P
deg1sublt.l φ L 0
deg1sublt.r φ R Ring
deg1sublt.fb φ F B
deg1sublt.fd φ D F L
deg1sublt.gb φ G B
deg1sublt.gd φ D G L
deg1sublt.a A = coe 1 F
deg1sublt.c C = coe 1 G
deg1sublt.eq φ coe 1 F L = coe 1 G L
Assertion deg1sublt φ D F - ˙ G < L

Proof

Step Hyp Ref Expression
1 deg1sublt.d D = deg 1 R
2 deg1sublt.p P = Poly 1 R
3 deg1sublt.b B = Base P
4 deg1sublt.m - ˙ = - P
5 deg1sublt.l φ L 0
6 deg1sublt.r φ R Ring
7 deg1sublt.fb φ F B
8 deg1sublt.fd φ D F L
9 deg1sublt.gb φ G B
10 deg1sublt.gd φ D G L
11 deg1sublt.a A = coe 1 F
12 deg1sublt.c C = coe 1 G
13 deg1sublt.eq φ coe 1 F L = coe 1 G L
14 eqid 0 P = 0 P
15 eqid 0 R = 0 R
16 eqid coe 1 F - ˙ G = coe 1 F - ˙ G
17 2 ply1ring R Ring P Ring
18 ringgrp P Ring P Grp
19 6 17 18 3syl φ P Grp
20 3 4 grpsubcl P Grp F B G B F - ˙ G B
21 19 7 9 20 syl3anc φ F - ˙ G B
22 eqid - R = - R
23 2 3 4 22 coe1subfv R Ring F B G B L 0 coe 1 F - ˙ G L = coe 1 F L - R coe 1 G L
24 6 7 9 5 23 syl31anc φ coe 1 F - ˙ G L = coe 1 F L - R coe 1 G L
25 13 oveq1d φ coe 1 F L - R coe 1 G L = coe 1 G L - R coe 1 G L
26 ringgrp R Ring R Grp
27 6 26 syl φ R Grp
28 eqid coe 1 G = coe 1 G
29 eqid Base R = Base R
30 28 3 2 29 coe1f G B coe 1 G : 0 Base R
31 9 30 syl φ coe 1 G : 0 Base R
32 31 5 ffvelrnd φ coe 1 G L Base R
33 29 15 22 grpsubid R Grp coe 1 G L Base R coe 1 G L - R coe 1 G L = 0 R
34 27 32 33 syl2anc φ coe 1 G L - R coe 1 G L = 0 R
35 24 25 34 3eqtrd φ coe 1 F - ˙ G L = 0 R
36 1 2 14 3 15 16 6 21 5 35 deg1ldgn φ D F - ˙ G L
37 36 neneqd φ ¬ D F - ˙ G = L
38 1 2 3 deg1xrcl F - ˙ G B D F - ˙ G *
39 21 38 syl φ D F - ˙ G *
40 1 2 3 deg1xrcl G B D G *
41 9 40 syl φ D G *
42 1 2 3 deg1xrcl F B D F *
43 7 42 syl φ D F *
44 41 43 ifcld φ if D F D G D G D F *
45 5 nn0red φ L
46 45 rexrd φ L *
47 2 1 6 3 4 7 9 deg1suble φ D F - ˙ G if D F D G D G D F
48 xrmaxle D F * D G * L * if D F D G D G D F L D F L D G L
49 43 41 46 48 syl3anc φ if D F D G D G D F L D F L D G L
50 8 10 49 mpbir2and φ if D F D G D G D F L
51 39 44 46 47 50 xrletrd φ D F - ˙ G L
52 xrleloe D F - ˙ G * L * D F - ˙ G L D F - ˙ G < L D F - ˙ G = L
53 39 46 52 syl2anc φ D F - ˙ G L D F - ˙ G < L D F - ˙ G = L
54 51 53 mpbid φ D F - ˙ G < L D F - ˙ G = L
55 orel2 ¬ D F - ˙ G = L D F - ˙ G < L D F - ˙ G = L D F - ˙ G < L
56 37 54 55 sylc φ D F - ˙ G < L