Metamath Proof Explorer


Theorem deg1submon1p

Description: The difference of two monic polynomials of the same degree is a polynomial of lesser degree. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1submon1p.d D=deg1R
deg1submon1p.o O=Monic1pR
deg1submon1p.p P=Poly1R
deg1submon1p.m -˙=-P
deg1submon1p.r φRRing
deg1submon1p.f1 φFO
deg1submon1p.f2 φDF=X
deg1submon1p.g1 φGO
deg1submon1p.g2 φDG=X
Assertion deg1submon1p φDF-˙G<X

Proof

Step Hyp Ref Expression
1 deg1submon1p.d D=deg1R
2 deg1submon1p.o O=Monic1pR
3 deg1submon1p.p P=Poly1R
4 deg1submon1p.m -˙=-P
5 deg1submon1p.r φRRing
6 deg1submon1p.f1 φFO
7 deg1submon1p.f2 φDF=X
8 deg1submon1p.g1 φGO
9 deg1submon1p.g2 φDG=X
10 eqid BaseP=BaseP
11 3 10 2 mon1pcl FOFBaseP
12 6 11 syl φFBaseP
13 eqid 0P=0P
14 3 13 2 mon1pn0 FOF0P
15 6 14 syl φF0P
16 1 3 13 10 deg1nn0cl RRingFBasePF0PDF0
17 5 12 15 16 syl3anc φDF0
18 7 17 eqeltrrd φX0
19 18 nn0red φX
20 19 leidd φXX
21 7 20 eqbrtrd φDFX
22 3 10 2 mon1pcl GOGBaseP
23 8 22 syl φGBaseP
24 9 20 eqbrtrd φDGX
25 eqid coe1F=coe1F
26 eqid coe1G=coe1G
27 7 fveq2d φcoe1FDF=coe1FX
28 eqid 1R=1R
29 1 28 2 mon1pldg FOcoe1FDF=1R
30 6 29 syl φcoe1FDF=1R
31 27 30 eqtr3d φcoe1FX=1R
32 1 28 2 mon1pldg GOcoe1GDG=1R
33 8 32 syl φcoe1GDG=1R
34 9 fveq2d φcoe1GDG=coe1GX
35 31 33 34 3eqtr2d φcoe1FX=coe1GX
36 1 3 10 4 18 5 12 21 23 24 25 26 35 deg1sublt φDF-˙G<X