Description: The difference of two monic polynomials of the same degree is a polynomial of lesser degree. (Contributed by Stefan O'Rear, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | deg1submon1p.d | |
|
deg1submon1p.o | |
||
deg1submon1p.p | |
||
deg1submon1p.m | |
||
deg1submon1p.r | |
||
deg1submon1p.f1 | |
||
deg1submon1p.f2 | |
||
deg1submon1p.g1 | |
||
deg1submon1p.g2 | |
||
Assertion | deg1submon1p | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1submon1p.d | |
|
2 | deg1submon1p.o | |
|
3 | deg1submon1p.p | |
|
4 | deg1submon1p.m | |
|
5 | deg1submon1p.r | |
|
6 | deg1submon1p.f1 | |
|
7 | deg1submon1p.f2 | |
|
8 | deg1submon1p.g1 | |
|
9 | deg1submon1p.g2 | |
|
10 | eqid | |
|
11 | 3 10 2 | mon1pcl | |
12 | 6 11 | syl | |
13 | eqid | |
|
14 | 3 13 2 | mon1pn0 | |
15 | 6 14 | syl | |
16 | 1 3 13 10 | deg1nn0cl | |
17 | 5 12 15 16 | syl3anc | |
18 | 7 17 | eqeltrrd | |
19 | 18 | nn0red | |
20 | 19 | leidd | |
21 | 7 20 | eqbrtrd | |
22 | 3 10 2 | mon1pcl | |
23 | 8 22 | syl | |
24 | 9 20 | eqbrtrd | |
25 | eqid | |
|
26 | eqid | |
|
27 | 7 | fveq2d | |
28 | eqid | |
|
29 | 1 28 2 | mon1pldg | |
30 | 6 29 | syl | |
31 | 27 30 | eqtr3d | |
32 | 1 28 2 | mon1pldg | |
33 | 8 32 | syl | |
34 | 9 | fveq2d | |
35 | 31 33 34 | 3eqtr2d | |
36 | 1 3 10 4 18 5 12 21 23 24 25 26 35 | deg1sublt | |