Metamath Proof Explorer


Theorem dfgcd3

Description: Alternate definition of the gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021)

Ref Expression
Assertion dfgcd3 MNMgcdN=ιd0|zzdzMzN

Proof

Step Hyp Ref Expression
1 gcdcl MNMgcdN0
2 simplr MNd0zzdzMzNd0
3 2 nn0zd MNd0zzdzMzNd
4 iddvds ddd
5 3 4 syl MNd0zzdzMzNdd
6 simpr MNd0zzdzMzNzzdzMzN
7 breq1 z=dzddd
8 breq1 z=dzMdM
9 breq1 z=dzNdN
10 8 9 anbi12d z=dzMzNdMdN
11 7 10 bibi12d z=dzdzMzNdddMdN
12 11 rspcv dzzdzMzNdddMdN
13 3 6 12 sylc MNd0zzdzMzNdddMdN
14 5 13 mpbid MNd0zzdzMzNdMdN
15 biimpr zdzMzNzMzNzd
16 15 ralimi zzdzMzNzzMzNzd
17 6 16 syl MNd0zzdzMzNzzMzNzd
18 dfgcd2 MNd=MgcdN0ddMdNzzMzNzd
19 18 adantr MNd0d=MgcdN0ddMdNzzMzNzd
20 simpr MNd0d0
21 20 nn0ge0d MNd00d
22 21 3biant1d MNd0dMdNzzMzNzd0ddMdNzzMzNzd
23 19 22 bitr4d MNd0d=MgcdNdMdNzzMzNzd
24 23 adantr MNd0zzdzMzNd=MgcdNdMdNzzMzNzd
25 14 17 24 mpbir2and MNd0zzdzMzNd=MgcdN
26 25 ex MNd0zzdzMzNd=MgcdN
27 dvdsgcdb zMNzMzNzMgcdN
28 27 bicomd zMNzMgcdNzMzN
29 28 3coml MNzzMgcdNzMzN
30 29 ad4ant124 MNd=MgcdNzzMgcdNzMzN
31 breq2 d=MgcdNzdzMgcdN
32 31 bibi1d d=MgcdNzdzMzNzMgcdNzMzN
33 32 ad2antlr MNd=MgcdNzzdzMzNzMgcdNzMzN
34 30 33 mpbird MNd=MgcdNzzdzMzN
35 34 ralrimiva MNd=MgcdNzzdzMzN
36 35 ex MNd=MgcdNzzdzMzN
37 36 adantr MNd0d=MgcdNzzdzMzN
38 26 37 impbid MNd0zzdzMzNd=MgcdN
39 1 38 riota5 MNιd0|zzdzMzN=MgcdN
40 39 eqcomd MNMgcdN=ιd0|zzdzMzN