Metamath Proof Explorer


Theorem dford3lem2

Description: Lemma for dford3 . (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion dford3lem2 TrxyxTryxOn

Proof

Step Hyp Ref Expression
1 suctr TrxTrsucx
2 vex xV
3 2 sucid xsucx
4 2 sucex sucxV
5 treq c=sucxTrcTrsucx
6 eleq2 c=sucxxcxsucx
7 5 6 anbi12d c=sucxTrcxcTrsucxxsucx
8 4 7 spcev TrsucxxsucxcTrcxc
9 1 3 8 sylancl TrxcTrcxc
10 9 adantr TrxyxTrycTrcxc
11 simprl baTrbybTrybOnTrayaTryTra
12 dford3lem1 TrayaTrybaTrbybTry
13 ralim baTrbybTrybOnbaTrbybTrybabOn
14 12 13 syl5 baTrbybTrybOnTrayaTrybabOn
15 14 imp baTrbybTrybOnTrayaTrybabOn
16 dfss3 aOnbabOn
17 15 16 sylibr baTrbybTrybOnTrayaTryaOn
18 ordon OrdOn
19 18 a1i baTrbybTrybOnTrayaTryOrdOn
20 trssord TraaOnOrdOnOrda
21 11 17 19 20 syl3anc baTrbybTrybOnTrayaTryOrda
22 vex aV
23 22 elon aOnOrda
24 21 23 sylibr baTrbybTrybOnTrayaTryaOn
25 24 ex baTrbybTrybOnTrayaTryaOn
26 treq a=bTraTrb
27 raleq a=byaTryybTry
28 26 27 anbi12d a=bTrayaTryTrbybTry
29 eleq1w a=baOnbOn
30 28 29 imbi12d a=bTrayaTryaOnTrbybTrybOn
31 treq a=xTraTrx
32 raleq a=xyaTryyxTry
33 31 32 anbi12d a=xTrayaTryTrxyxTry
34 eleq1w a=xaOnxOn
35 33 34 imbi12d a=xTrayaTryaOnTrxyxTryxOn
36 25 30 35 setindtrs cTrcxcTrxyxTryxOn
37 10 36 mpcom TrxyxTryxOn