| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dgreq0.1 |  | 
						
							| 2 |  | dgreq0.2 |  | 
						
							| 3 |  | simpr |  | 
						
							| 4 | 3 | fveq2d |  | 
						
							| 5 |  | dgr0 |  | 
						
							| 6 | 5 | eqcomi |  | 
						
							| 7 | 4 1 6 | 3eqtr4g |  | 
						
							| 8 |  | nn0ge0 |  | 
						
							| 9 | 8 | ad2antlr |  | 
						
							| 10 | 7 9 | eqbrtrd |  | 
						
							| 11 | 3 | fveq2d |  | 
						
							| 12 |  | coe0 |  | 
						
							| 13 | 12 | eqcomi |  | 
						
							| 14 | 11 2 13 | 3eqtr4g |  | 
						
							| 15 | 14 | fveq1d |  | 
						
							| 16 |  | c0ex |  | 
						
							| 17 | 16 | fvconst2 |  | 
						
							| 18 | 17 | ad2antlr |  | 
						
							| 19 | 15 18 | eqtrd |  | 
						
							| 20 | 10 19 | jca |  | 
						
							| 21 |  | dgrcl |  | 
						
							| 22 | 1 21 | eqeltrid |  | 
						
							| 23 | 22 | nn0red |  | 
						
							| 24 |  | nn0re |  | 
						
							| 25 |  | ltle |  | 
						
							| 26 | 23 24 25 | syl2an |  | 
						
							| 27 | 26 | imp |  | 
						
							| 28 | 2 1 | dgrub |  | 
						
							| 29 | 28 | 3expia |  | 
						
							| 30 |  | lenlt |  | 
						
							| 31 | 24 23 30 | syl2anr |  | 
						
							| 32 | 29 31 | sylibd |  | 
						
							| 33 | 32 | necon4ad |  | 
						
							| 34 | 33 | imp |  | 
						
							| 35 | 27 34 | jca |  | 
						
							| 36 | 20 35 | jaodan |  | 
						
							| 37 |  | leloe |  | 
						
							| 38 | 23 24 37 | syl2an |  | 
						
							| 39 | 38 | biimpa |  | 
						
							| 40 | 39 | adantrr |  | 
						
							| 41 |  | fveq2 |  | 
						
							| 42 | 1 2 | dgreq0 |  | 
						
							| 43 | 42 | ad2antrr |  | 
						
							| 44 |  | simprr |  | 
						
							| 45 | 44 | eqeq2d |  | 
						
							| 46 | 43 45 | bitr4d |  | 
						
							| 47 | 41 46 | imbitrrid |  | 
						
							| 48 | 47 | orim2d |  | 
						
							| 49 | 40 48 | mpd |  | 
						
							| 50 | 49 | orcomd |  | 
						
							| 51 | 36 50 | impbida |  |